Skip to content

Instantly share code, notes, and snippets.

@ginrou
Created January 4, 2015 01:45
Show Gist options
  • Save ginrou/02e945562607fad170a1 to your computer and use it in GitHub Desktop.
Save ginrou/02e945562607fad170a1 to your computer and use it in GitHub Desktop.
Fast Bilateral Filter

Fast Bilateral Filter implementation for OpenCV

Algorithm and implementation is based on http://people.csail.mit.edu/sparis/bf/ Please cite above paper for research purpose.

Sample Code

#include <iostream>
#include "fastBilateral.hpp"
using namespace std;

int main(int argc, char* argv[])
{
    cv::Mat1b src = cv::imread(argv[1], cv::IMREAD_GRAYSCALE);
    cv::Mat1b dst;
    cout << "start" << endl;
    const double sigmaColor = 100.0;
    const double sigmaSpace = 10.0;
    cv_extend::bilateralFilter(src, dst, sigmaColor, sigmaSpace);
    cout << "done" << endl;
    cv::imwrite(argv[2], dst);

    return 0;
}

/**
This sofrware and program is distributed under MIT License.
Original alogorithm : http://people.csail.mit.edu/sparis/bf/
Please cite above paper for research purpose.
The MIT License (MIT)
Copyright (c) 2015 Yuichi Takeda
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#ifndef __FAST_BILATERAL__
#define __FAST_BILATERAL__
#include <opencv2/opencv.hpp>
namespace cv_extend {
void bilateralFilter(cv::InputArray src, cv::OutputArray dst,
double sigmaColor, double sigmaSpace);
void bilateralFilterImpl(cv::Mat1d src, cv::Mat1d dst,
double sigmaColor, double sigmaSpace);
template<typename T, typename T_, typename T__>
inline
T clamp(const T_ min, const T__ max, const T x)
{
return
( x < static_cast<T>(min) ) ? static_cast<T>(min) :
( x < static_cast<T>(max) ) ? static_cast<T>(x) :
static_cast<T>(max);
}
template<typename T>
inline
T
trilinear_interpolation( const cv::Mat mat,
const double y,
const double x,
const double z)
{
const size_t height = mat.size[0];
const size_t width = mat.size[1];
const size_t depth = mat.size[2];
const size_t y_index = clamp(0, height-1, static_cast<size_t>(y));
const size_t yy_index = clamp(0, height-1, y_index+1);
const size_t x_index = clamp(0, width-1, static_cast<size_t>(x));
const size_t xx_index = clamp(0, width-1, x_index+1);
const size_t z_index = clamp(0, depth-1, static_cast<size_t>(z));
const size_t zz_index = clamp(0, depth-1, z_index+1);
const double y_alpha = y - y_index;
const double x_alpha = x - x_index;
const double z_alpha = z - z_index;
return
(1.0-y_alpha) * (1.0-x_alpha) * (1.0-z_alpha) * mat.at<T>(y_index, x_index, z_index) +
(1.0-y_alpha) * x_alpha * (1.0-z_alpha) * mat.at<T>(y_index, xx_index, z_index) +
y_alpha * (1.0-x_alpha) * (1.0-z_alpha) * mat.at<T>(yy_index, x_index, z_index) +
y_alpha * x_alpha * (1.0-z_alpha) * mat.at<T>(yy_index, xx_index, z_index) +
(1.0-y_alpha) * (1.0-x_alpha) * z_alpha * mat.at<T>(y_index, x_index, zz_index) +
(1.0-y_alpha) * x_alpha * z_alpha * mat.at<T>(y_index, xx_index, zz_index) +
y_alpha * (1.0-x_alpha) * z_alpha * mat.at<T>(yy_index, x_index, zz_index) +
y_alpha * x_alpha * z_alpha * mat.at<T>(yy_index, xx_index, zz_index);
}
/**
* Implementation
*/
void bilateralFilter(cv::InputArray _src, cv::OutputArray _dst,
double sigmaColor, double sigmaSpace)
{
cv::Mat src = _src.getMat();
CV_Assert(src.channels() == 1);
// bilateralFilterImpl runs with double depth, single channel
if ( src.depth() != CV_64FC1 ) {
src = cv::Mat(_src.size(), CV_64FC1);
_src.getMat().convertTo(src, CV_64FC1);
}
cv::Mat dst_tmp = cv::Mat(_src.size(), CV_64FC1);
bilateralFilterImpl(src, dst_tmp, sigmaColor, sigmaSpace);
_dst.create(dst_tmp.size(), _src.type());
dst_tmp.convertTo(_dst.getMat(), _src.type());
}
void bilateralFilterImpl(cv::Mat1d src, cv::Mat1d dst,
double sigma_color, double sigma_space)
{
using namespace cv;
const size_t height = src.rows, width = src.cols;
const size_t padding_xy = 2, padding_z = 2;
double src_min, src_max;
cv::minMaxLoc(src, &src_min, &src_max);
const size_t small_height = static_cast<size_t>((height-1)/sigma_space) + 1 + 2 * padding_xy;
const size_t small_width = static_cast<size_t>((width-1)/sigma_space) + 1 + 2 * padding_xy;
const size_t small_depth = static_cast<size_t>((src_max-src_min)/sigma_color) + 1 + 2 * padding_xy;
int data_size[] = {small_height, small_width, small_depth};
cv::Mat data(3, data_size, CV_64FC2);
data.setTo(0);
// down sample
for ( int y = 0; y < height; ++y ) {
for ( int x = 0; x < width; ++x) {
const size_t small_x = static_cast<size_t>( x/sigma_space + 0.5) + padding_xy;
const size_t small_y = static_cast<size_t>( y/sigma_space + 0.5) + padding_xy;
const double z = src.at<double>(y,x) - src_min;
const size_t small_z = static_cast<size_t>( z/sigma_color + 0.5 ) + padding_z;
cv::Vec2d v = data.at<cv::Vec2d>(small_y, small_x, small_z);
v[0] += src.at<double>(y,x);
v[1] += 1.0;
data.at<cv::Vec2d>(small_y, small_x, small_z) = v;
}
}
// convolution
cv::Mat buffer(3, data_size, CV_64FC2);
buffer.setTo(0);
int offset[3];
offset[0] = &(data.at<cv::Vec2d>(1,0,0)) - &(data.at<cv::Vec2d>(0,0,0));
offset[1] = &(data.at<cv::Vec2d>(0,1,0)) - &(data.at<cv::Vec2d>(0,0,0));
offset[2] = &(data.at<cv::Vec2d>(0,0,1)) - &(data.at<cv::Vec2d>(0,0,0));
for ( int dim = 0; dim < 3; ++dim ) { // dim = 3 stands for x, y, and depth
const int off = offset[dim];
for ( int ittr = 0; ittr < 2; ++ittr ) {
cv::swap(data, buffer);
for ( int y = 1; y < small_height-1; ++y ) {
for ( int x = 1; x < small_width-1; ++x ) {
cv::Vec2d *d_ptr = &(data.at<cv::Vec2d>(y,x,1));
cv::Vec2d *b_ptr = &(buffer.at<cv::Vec2d>(y,x,1));
for ( int z = 1; z < small_depth-1; ++z, ++d_ptr, ++b_ptr ) {
cv::Vec2d b_prev = *(b_ptr-off), b_curr = *b_ptr, b_next = *(b_ptr+off);
*d_ptr = (b_prev + b_next + 2.0 * b_curr) / 4.0;
} // z
} // x
} // y
} // ittr
} // dim
// upsample
for ( cv::MatIterator_<cv::Vec2d> d = data.begin<cv::Vec2d>(); d != data.end<cv::Vec2d>(); ++d )
{
(*d)[0] /= (*d)[1] != 0 ? (*d)[1] : 1;
}
for ( int y = 0; y < height; ++y ) {
for ( int x = 0; x < width; ++x ) {
const double z = src.at<double>(y,x) - src_min;
const double px = static_cast<double>(x) / sigma_space + padding_xy;
const double py = static_cast<double>(y) / sigma_space + padding_xy;
const double pz = static_cast<double>(z) / sigma_color + padding_z;
dst.at<double>(y,x) = trilinear_interpolation<cv::Vec2d>(data, py, px, pz)[0];
}
}
}
} // end of namespace cv_extend
#endif
@ginrou
Copy link
Author

ginrou commented Jan 4, 2015

Sample results

sample of fast bf

@newmytestgit
Copy link

Please mension the running time of this "bilateralFilterImpl" method per frame or image

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment