Instance | Branch |
---|
""" | |
Some python code for | |
Markov Chain Monte Carlo and Gibs sampling | |
by Bruce Walsh | |
""" | |
import numpy as np | |
import numpy.linalg as npla |
Wensheng Wang, 10/1/11
Source: http://blog.wensheng.org/2011/10/performance-of-flask-tornado-gevent-and.html
When choosing a web framework, I pretty much have eyes set on Tornado. But I heard good things about Flask and Gevent. So I tested the performance of each and combinations of the three. I chose something just a little more advanced than a "Hello World" program to write - one that use templates. Here are the codes:
- 한국어 번역(초벌): nacyot
- 같이 읽으면 좋은 문서들
영어지만, 조금 더 상세하게 마크다운 사용법을 안내하고 있는
"Markdown Guide (https://www.markdownguide.org/)" 를 보시는 것을 추천합니다. ^^
아, 그리고 마크다운만으로 표현이 부족하다고 느끼신다면, HTML 태그를 활용하시는 것도 좋습니다.
##VGG16 model for Keras
This is the Keras model of the 16-layer network used by the VGG team in the ILSVRC-2014 competition.
It has been obtained by directly converting the Caffe model provived by the authors.
Details about the network architecture can be found in the following arXiv paper:
Very Deep Convolutional Networks for Large-Scale Image Recognition
K. Simonyan, A. Zisserman
글쓴이: 김정주([email protected])
최근 딥러닝 관련 패키지들은 대부분 CPU와 GPU를 함께 지원하고 있습니다. GPU를 사용하면 보다 빠르게 학습 결과를 낼 수 있지만, GPU를 활용하기 위해서는 NVIDIA계열의 그래픽 카드, 드라이버 S/W 그리고 CUDA의 설치를 필요로 합니다.
이 글에서는 AWS의 GPU 인스턴스와 도커를 활용해 딥러닝 패키지(Caffe)를 편리하게 사용하는 방법을 소개합니다.
##VGG19 model for Keras
This is the Keras model of the 19-layer network used by the VGG team in the ILSVRC-2014 competition.
It has been obtained by directly converting the Caffe model provived by the authors.
Details about the network architecture can be found in the following arXiv paper:
Very Deep Convolutional Networks for Large-Scale Image Recognition
K. Simonyan, A. Zisserman
'''This scripts implements Kim's paper "Convolutional Neural Networks for Sentence Classification" | |
with a very small embedding size (20) than the commonly used values (100 - 300) as it gives better | |
result with much less parameters. | |
Run on GPU: THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python imdb_cnn.py | |
Get to 0.853 test accuracy after 5 epochs. 13s/epoch on Nvidia GTX980 GPU. | |
''' | |
from __future__ import print_function |