Created
November 4, 2017 22:21
-
-
Save gokceneraslan/e4c36aed552b0553241afeba0bdd010c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
import plotnine as p9 | |
import torch | |
from torch.autograd import Variable | |
from torch.utils.data import TensorDataset, DataLoader, Dataset | |
np.random.seed(555) | |
torch.manual_seed(555) | |
num_sample = 300 | |
num_feat = 10 | |
num_out = 10 | |
batch_size = 32 | |
lr = 1e-4 | |
epochs = 300 | |
X = np.random.normal(0, 0.5, (num_sample, num_feat)).astype(np.float64) | |
W = np.random.normal(0, 0.5, (num_feat, num_out)).astype(np.float64) | |
b = np.random.normal(0, 0.5, (1, num_out)).astype(np.float64) | |
Y = np.dot(X, W) + b | |
X -= X.mean(0) | |
ds = TensorDataset(torch.from_numpy(X).double(), torch.from_numpy(Y).double()) | |
# train torch models with and without shuffling | |
model1 = torch.nn.Linear(num_feat, num_out).double() | |
opt1 = torch.optim.SGD(model1.parameters(), lr=lr) | |
loss1 = torch.nn.MSELoss() | |
train_hist_torch = [] | |
for epoch in range(epochs): | |
train_batch_losses = [] | |
for x, y in DataLoader(ds, batch_size=batch_size, shuffle=True, drop_last=True): | |
x_var, y_var = Variable(x, requires_grad=False), Variable(y, requires_grad=False) | |
pred = model1(x_var) | |
l = loss1(pred, y_var) | |
train_batch_losses.append(l.data[0]) | |
opt1.zero_grad() | |
l.backward() | |
opt1.step() | |
# save mean of all batch errors within the epoch | |
train_hist_torch.append(np.array(train_batch_losses).mean()) | |
from keras.models import Model | |
from keras.layers import Input, Dense | |
from keras.optimizers import SGD | |
from keras import backend as K | |
inputs = Input(shape=(num_feat,)) | |
predictions = Dense(num_out, activation='linear')(inputs) | |
model = Model(inputs=inputs, outputs=predictions) | |
opt = SGD(lr=lr) | |
model.compile(optimizer=opt, loss='mse') | |
losses = model.fit(X, Y, | |
batch_size=batch_size, | |
epochs=epochs, verbose=0, shuffle=True) | |
train_hist_keras = losses.history['loss'] | |
(p9.ggplot(pd.DataFrame({'torch_train_torch': train_hist_torch, | |
'torch_train_keras': train_hist_keras, | |
'epochs': range(len(train_hist_torch))}), | |
p9.aes(x='epochs')) + | |
p9.geom_path(p9.aes(y='torch_train_torch', color='"training loss (sgd, torch)"')) + | |
p9.geom_path(p9.aes(y='torch_train_keras', color='"training loss (sgd, keras)"')) + | |
p9.labs(color='Loss', y=' ') + | |
p9.theme_minimal()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment