Skip to content

Instantly share code, notes, and snippets.

This uses llm.datasette.io and OpenAI.
I use `git commit --template` to provide the output from the LLM to Git. This way, if you do not like the results, you
can quit your editor and no commit will be made.
# Shell function for generating a diff and editing it in your default editor:
gcllm() {
GIT_DIR="$(git rev-parse --git-dir)"
TEMPLATE="$GIT_DIR/COMMIT_EDITMSG_TEMPLATE"
@Brandon7CC
Brandon7CC / speak_ollama.sh
Created December 29, 2023 23:38
📣 Giving Ollama a voice with the macOS `say` command! NOTE: Change to Siri in `System Settings.app` for the best results.
function speak_ollama() {
if ! command -v ollama &> /dev/null; then
echo "Error: ollama is not installed."
return 1
fi
if [ "$#" -ne 2 ]; then
echo "Usage: speak_ollama <file_path> <model>"
return 1
fi

Here are my favorite tech newsletters:

  • Frontend Focus: A once–weekly roundup of the best front-end news, articles and tutorials. HTML, CSS, WebGL, Canvas, browser tech, and more.
  • This Week In React: The latest news directly in your inbox!
  • Web Tools Weekly: A weekly newsletter for front-end developers with a specific focus on tools.
  • NEXT.JS Weekly: A newsletter of the best Next.js articles, tools and projects
  • JavaScript Weekly: A newsletter of JavaScript articles, news and cool projects
  • Friday Front-End: Front-end development links tweeted daily, emailed weekly.
  • CSS Weekly: Weekly e-mail roundup of CSS articles, tutorials, experiments, and tools curated by Zoran Jambor
  • Liquid Weekly: Your one-stop shop for all things Shopify Development
@willbchang
willbchang / azure_tts.sh
Last active November 11, 2023 04:55
A simple example to use Azure text to speech REST API with shell script in macOS via Popclip Snippet. You can get the newest version from: https://github.com/willbchang/popclip-azure-text-to-speech
#!/bin/zsh
# #popclip
# name: Azure TTS
# icon: symbol:message.and.waveform
# Please apply for your own key
AZURE_REGION=
AZURE_SUBSCRIPTION_KEY=
# Create a temporary audio file
@mrjk
mrjk / cli-app-typer.py
Last active March 2, 2025 15:15
A quite complete example of python CLI Typer boilerplate [python] (Archive)
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Version: 08-2024
# Migrated to: https://github.com/mrjk/python_snippets/blob/main/examples/typer/cli-app-typer.py
"""MyApp CLI interface
This CLI provides a similar experience as the git CLI, but in Python with Typer.
from langchain.chat_models import ChatOpenAI
from pydantic import BaseModel, Field
from langchain.document_loaders import UnstructuredURLLoader
from langchain.chains.openai_functions import create_extraction_chain_pydantic
class LLMItem(BaseModel):
title: str = Field(description="The simple and concise title of the product")
description: str = Field(description="The description of the product")
def main():
@kylemcdonald
kylemcdonald / function-calling.ipynb
Created June 14, 2023 01:10
Example of OpenAI function calling API to extract data from LAPD newsroom articles.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@CharlesNepote
CharlesNepote / csv2datasette
Last active December 5, 2024 09:06
csv2datasette
#!/usr/bin/env bash
# sudo ln -s "$(pwd)/csv2datasette" /usr/bin/csv2datasette
# csv2datasette is meant to explore CSV data. It is not meant to create a sustainable DB.
# csv2datasette is a bash script which open CSV files directly in Datasette. It offers
# a number of options for reading and exploring CSV files, such as --stats, inspired by WTFCsv.
#
# `--stats` option includes, for each column: the column name, the number of unique values,
# the number of filled rows, the number of missing values, the mininmum value, the maximum value,
# the average, the sum, the shortest string, the longest string, the number of numeric values,
from langchain.document_loaders import YoutubeLoader
from langchain.indexes import VectorstoreIndexCreator
urls = [
("https://www.youtube.com/watch?v=fP6vRNkNEt0", "Prompt Injection"),
("https://www.youtube.com/watch?v=qWv2vyOX0tk", "Low Code-No Code"),
("https://www.youtube.com/watch?v=k8GNCCs16F4", "Agents In Production"),
("https://www.youtube.com/watch?v=1gRlCjy18m4", "Agents"),
("https://www.youtube.com/watch?v=fLn-WqliEQU", "Output Parsing"),
("https://www.youtube.com/watch?v=ywT-5yKDtDg", "Document QA"),
("https://www.youtube.com/watch?v=GrCFyyyAxCU", "SQL"),
from langchain.document_loaders import YoutubeLoader
from langchain.indexes import VectorstoreIndexCreator
loader = YoutubeLoader.from_youtube_url("https://www.youtube.com/watch?v=fLn-WqliEQU&lc=UgyOc6oNr_4-YLGCL2R4AaABAg", add_video_info=False)
docs = loader.load()
index = VectorstoreIndexCreator()
index = index.from_documents(docs)