Last active
May 5, 2020 02:40
-
-
Save hi-ogawa/250f2363b93b83aec636bba353f183d4 to your computer and use it in GitHub Desktop.
Markdown TeX Demo
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
$$$ | |
% Quick begin/end | |
\newcommand{\Ba}[0]{\begin{aligned}} | |
\newcommand{\Ea}[0]{\end{aligned}} | |
\newcommand{\Bc}[0]{\begin{cases}} | |
\newcommand{\Ec}[0]{\end{cases}} | |
\newcommand{\Bm}[0]{\begin{matrix}} | |
\newcommand{\Em}[0]{\end{matrix}} | |
\newcommand{\Bmp}[0]{\begin{pmatrix}} | |
\newcommand{\Emp}[0]{\end{pmatrix}} | |
% Others | |
\newcommand{\bb}[0]{\mathbf} | |
\newcommand{\del}[0]{\partial} | |
\newcommand{\xx}[0]{\times} | |
\renewcommand{\ll}[0]{\left} | |
\newcommand{\rr}[0]{\right} | |
\newcommand{\RR}[0]{\mathbb{R}} | |
\newcommand\ddfrac[2]{{\displaystyle\frac{\displaystyle #1}{\displaystyle #2}}} | |
$$$ | |
## Stereographic projection | |
### Def. 1 | |
We define $F$ as below: | |
$$ | |
\begin{aligned} | |
F : \RR^{n + 1} \supset | |
S^n \setminus \{ (1, \bb{0}) \} &\to \RR^n \\ | |
(x_0, \bb{x}) \quad\quad &\mapsto \bb{y} = \frac{\bb{x}}{1 - x_0}. | |
\end{aligned} | |
$$ | |
### Prop. 2 | |
The inverse of \(F\) is: | |
\[ | |
\begin{aligned} | |
F^{-1}(\bb{y}) = | |
\left( | |
\frac{|\bb{y}|^2 - 1}{|\bb{y}|^2 + 1}, | |
\frac{2 \bb{y}}{|\bb{y}|^2 + 1} | |
\right) | |
\equiv G(\bb{y}). | |
\end{aligned} | |
\] | |
***Proof*** | |
Given $x_0^2 + |\bb{x}|^2 = 1$, we see: | |
$$ | |
\begin{aligned} | |
\bb{y} = F(x_0, \bb{x}) = \frac{\bb{x}}{1 - x_0} | |
&\implies | |
|\bb{y}|^2 | |
= \frac{|\bb{x}|^2}{(1 - x_0)^2} | |
= \frac{1 - x_0^2}{(1 - x_0)^2} | |
= \frac{1 + x_0}{1 - x_0} \\ | |
&\implies | |
(1 - x_0) |\bb{y}|^2 = 1 + x_0 \\ | |
&\implies | |
x_0 = \frac{|\bb{y}|^2 - 1}{|\bb{y}|^2 + 1} | |
= 1 - \frac{2}{|\bb{y}|^2 + 1}. | |
\end{aligned} | |
$$ | |
And, we also have: | |
$$ | |
\bb{x} = (1 - x_0) \bb{y} = \dfrac{2}{|\vec{y}|^2 + 1} \bb{y}. | |
$$ | |
So, we have proved $F^{-1} \circ F = \text{id}$. | |
For the converse $F \circ F^{-1} = \text{id}$, we have: | |
$$ | |
\begin{aligned} | |
\frac{\bb{x}}{1 - x_0} | |
= | |
\ddfrac | |
{ \frac{2 \bb{y}}{|\bb{y}|^2 + 1} } | |
{ 1 - \frac{|\bb{y}|^2 - 1}{|\bb{y}|^2 + 1} } | |
= | |
\dfrac | |
{ 2 \bb{y} } | |
{ |\bb{y}|^2 + 1 - (|\bb{y}|^2 - 1) } | |
= \bb{y}. | |
\end{aligned} | |
$$ | |
### Prop. 3 | |
For the Jacobian $J \equiv \bb{D}G|_{y} \in \RR^{(n + 1) \xx n}$, | |
we have $J^T J = \ll( \dfrac{2}{|\bb{y}|^2 + 1} \rr)^2 I$. | |
***Proof*** | |
First we note: | |
$$ | |
\del_y \dfrac{1}{|\bb{y}|^2 + 1} | |
= - 2 \dfrac{\bb{y}^T}{(|\bb{y}|^2 + 1)^2} \in \RR^{1 \xx n}. | |
$$ | |
Thus, separating components as: | |
$$ | |
J = \bb{D}G|_y | |
= \Bmp | |
\del_y x_0 &\in \RR^{1 \times n} \\ | |
\del_y \bb{x} &\in \RR^{n \times n} | |
\Emp, | |
$$ | |
we can see: | |
$$ | |
\Ba | |
\del_y x_0 | |
&= \del_y \ll( 1 - \frac{2}{|\bb{y}|^2 + 1} \rr) | |
= \dfrac{1}{(|\bb{y}|^2 + 1)^2} 4 \bb{y}^T, \\ | |
\del_y \bb{x} | |
&= \del_y \frac{2 \bb{y}}{|\bb{y}|^2 + 1} | |
= 2 \ll( | |
\frac{1}{|\bb{y}|^2 + 1} I + | |
\bb{y} \; \del_y \frac{1}{|\bb{y}|^2 + 1} | |
\rr) \\ | |
&= 2 \ll( | |
\frac{1}{|\bb{y}|^2 + 1} I | |
- 2 \frac{\bb{y} \bb{y}^T}{(|\bb{y}|^2 + 1)^2} | |
\rr) \\ | |
&= | |
\frac{1}{(|\bb{y}|^2 + 1)^2} | |
2 \ll( | |
(|\bb{y}|^2 + 1) I | |
- 2 \bb{y} \bb{y}^T | |
\rr), \\ | |
J &= | |
\frac{1}{(|\bb{y}|^2 + 1)^2} | |
\Bmp | |
4 \bb{y}^T \\ | |
2 ( (|\bb{y}|^2 + 1) I - 2 \bb{y} \bb{y}^T ) | |
\Emp. | |
\Ea | |
$$ | |
Therefore: | |
$$ | |
\Ba | |
J^T J &= | |
\Bmp | |
(\del_y x_0)^T \; | |
(\del_y \bb{x})^T | |
\Emp | |
\Bmp | |
\del_y x_0 \\ | |
\del_y \bb{x} | |
\Emp | |
= | |
(\del_y x_0)^T \del_y x_0 | |
+ (\del_y \bb{x})^T \del_y \bb{x} \\ | |
&= | |
\frac{1}{(|y|^2 + 1)^4} | |
\ll( | |
16 \bb{y} \bb{y}^T | |
+ 4 | |
\ll( | |
(|y|^2 + 1)^2 I | |
+ 4 |y|^2 \bb{y} \bb{y}^T | |
- 4 (|y|^2 + 1) \bb{y} \bb{y}^T | |
\rr) | |
\rr) \\ | |
&= | |
\frac{1}{(|y|^2 + 1)^4} 4 (|y|^2 + 1)^2 I \\ | |
&= | |
\frac{4}{(|y|^2 + 1)^2} I. | |
\Ea | |
$$ | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment