Skip to content

Instantly share code, notes, and snippets.

@hi-ogawa
Last active May 8, 2020 05:11
Show Gist options
  • Save hi-ogawa/62458b3976eaae32d403603901da8880 to your computer and use it in GitHub Desktop.
Save hi-ogawa/62458b3976eaae32d403603901da8880 to your computer and use it in GitHub Desktop.
complex-dynamics
$$$
% From AsciiMath
\newcommand{\bb}[0]{\mathbf}
\newcommand{\bbb}[0]{\mathbb}
\newcommand{\cc}[0]{\mathcal}
\newcommand{\RR}[0]{\bbb{R}}
\newcommand{\CC}[0]{\bbb{C}}
\newcommand{\xx}[0]{\times}
\newcommand{\del}[0]{\partial}
% Others
\newcommand{\t}[0]{\text}
\newcommand{\defeq}[0]{\overset{\text{def}}{\equiv}}
\newcommand{\defiff}[0]{\overset{\text{def}}{\iff}}
$$$
## Fatou/Julia set
**TODO**
- Prop.
- for $c = R e^{i\nu}$, we have
$
f_c(r e^{i \phi + i \frac{\nu}{2}})
= (r^2 e^{i 2 \phi} + R) e^{i \nu}
= f_c(r e^{i \phi + i \frac{\nu}{2} + \pi})
$
- Prop.
- $K_{f_c} : \t{connected} \iff 0 \in K_{f_c}$
- $\implies$ : by symmetry around $0$
- Prop.
- $z \in F_f \iff f(z) \in F_f$
- Prop. Koenigs linearization
**Preliminary**
- $f_c(z) \defeq z^2 + c$.
### Def. 1
Define ***Fatou set*** and ***Julia set*** of $f$ by:
- $
F_f \defeq
\{\; z \mid
\exists U : \t{neighborhood of \(z\) s.t.}
\;\{\; f^{n} : U \to \CC \;\}_n : \t{normal} \;\}
$
- $J_f$
If $\infty \in F_f$, then we also define ***Filled Julia set*** of $f$ by:
- $K_f \defeq (\t{the connected component of \(F_f\) which includes \(\infty\)})$.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment