Last active
May 5, 2020 02:39
-
-
Save hi-ogawa/98420ffb3a7dd9d8d316473d9a74369f to your computer and use it in GitHub Desktop.
hyperbolic-geometry
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
- Mobius transform | |
- Half plane | |
- Cayley transform, Hyperbolic stereographic projection |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
$$$ | |
% From AsciiMath | |
\newcommand{\bb}[0]{\mathbf} | |
\newcommand{\bbb}[0]{\mathbb} | |
\newcommand{\cc}[0]{\mathcal} | |
\newcommand{\RR}[0]{\bbb{R}} | |
\newcommand{\CC}[0]{\bbb{C}} | |
\newcommand{\xx}[0]{\times} | |
\newcommand{\del}[0]{\partial} | |
% Quick begin/end | |
\newcommand{\Ba}[0]{\begin{aligned}} | |
\newcommand{\Ea}[0]{\end{aligned}} | |
\newcommand{\Bc}[0]{\begin{cases}} | |
\newcommand{\Ec}[0]{\end{cases}} | |
\newcommand{\Bm}[0]{\begin{matrix}} | |
\newcommand{\Em}[0]{\end{matrix}} | |
\newcommand{\Bmp}[0]{\begin{pmatrix}} % round bracket | |
\newcommand{\Emp}[0]{\end{pmatrix}} | |
\newcommand{\Bms}[0]{\begin{bmatrix}} % square bracket | |
\newcommand{\Ems}[0]{\end{bmatrix}} | |
\newcommand{\Bmc}[0]{\begin{Bmatrix}} % curley bracket | |
\newcommand{\Emc}[0]{\end{Bmatrix}} | |
% Others | |
\newcommand{\t}[0]{\text} | |
\newcommand{\Abs}[1]{\left|#1\right|} | |
\newcommand{\Paren}[1]{\left(#1\right)} | |
\newcommand{\defiff}[0]{\overset{\text{def}}{\iff}} | |
\newcommand\ddfrac[2]{{\displaystyle\frac{\displaystyle #1}{\displaystyle #2}}} | |
$$$ | |
## Mobius transform | |
### Def. 1 | |
$m : \CC \to \CC$ is **Mobius transform** if $m(z) = \dfrac{a z + b}{c z + d}$ | |
for some $a, b, c, d \in \CC$ s.t. $ad - bc \ne 0$. | |
**N.B.** | |
- We denote such $m$ by $m \equiv \Bms a & b \\ c & d \Ems \in \cc{M}$. | |
- Since $m(z) = \dfrac{a z + b}{c z + d} = \dfrac{\mu a z + \mu b}{\mu c z + \mu d}$, | |
we have $\Bms a & b \\ c & d \Ems = \Bms \mu a & \mu b \\ \mu c & \mu d \Ems$. | |
So, by taking $\mu = (ad - bc)^{-\frac{1}{2}}$, we have | |
$(\mu a) (\mu d) - (\mu b) (\mu c) = \mu^2 (ad - bc) = 1$. | |
Therefore, from here we often implicitly assume $ad - bc = 1$. | |
- Define $\cc{M}_{\RR}$ by: $m \in \cc{M}_{\RR} \iff a, b, c, d \in \RR$. | |
- We often implicitly use the isomorphism: | |
$\CC \leftrightarrow \RR^2 : x + i y \leftrightarrow (x, y)$. | |
### Prop. 2 | |
$$ | |
\Bms a & b \\ c & d \Ems | |
\circ | |
\Bms a' & b' \\ c' & d' \Ems | |
= | |
\Bms a a' + b c' & a b' + b d' \\ c a' + d c' & c b' + d d' \Ems. | |
$$ | |
***Proof*** | |
We see: | |
$$ | |
\frac{ | |
a \dfrac{a' z + b'}{c' z + d'} + b | |
}{ | |
c \dfrac{a' z + b'}{c' z + d'} + d | |
} | |
= | |
\frac{ | |
a (a' z + b') + b (c' z + d') | |
}{ | |
c (a' z + b') + d (c' z + d') | |
} | |
= | |
\frac{ | |
(a a' + b c') z + a b' + b d' | |
}{ | |
(c a' + d c') z + c b' + d d' | |
}. | |
$$ | |
### Prop. 3 | |
$$ | |
\Ba | |
m(z) | |
&= \dfrac{a z + b}{c z + d} | |
= \dfrac{(a z + b) (c z + d)^\dag}{|c z + d|^2} | |
= \dfrac{1}{|c z + d|^2} | |
( a c^\dag |z|^2 + b d^\dag + a d^\dag z + b c^\dag z^\dag ) \\ | |
&= \dfrac{1}{|c z + d|^2} | |
\Paren{ | |
(a c^\dag |z|^2 + b d^\dag + (a d^\dag + b c^\dag) x) | |
+ i (a d^\dag - b c^\dag) y }. | |
\Ea | |
$$ | |
**N.B.** | |
For $m = \Bms a & b \\ c & d \Ems \in \cc{M}_\RR$ with $ad - bc = 1$, we have | |
$$ | |
\Ba | |
m(z) | |
&= \dfrac{1}{|c z + d|^2} | |
\Paren{ | |
(a c |z|^2 + b d + (a d + b c) x) + i y}. | |
\Ea | |
$$ | |
### Def. 4 | |
We define stereographic projection | |
$ | |
\t{SP} : S^2 \to \RR^2 \simeq \CC | |
: (x_0, x, y) \mapsto \dfrac{(x, y)}{1 - x_0} \mapsto \dfrac{x + i y}{1 - x_0} | |
$. | |
### Prop. 5 (Mobius transform and $S^2$ rotation) | |
$$ | |
\Bm | |
& S^2 & \xrightarrow{\t{SP}} & \CC & \\ | |
\Bmp \t{Rot}_{2 \phi} & 0 \\ 0 & 1 \Emp | |
& \downarrow & & \downarrow & | |
[ \t{Rot}_\phi ] \\ | |
& S^2 & \xrightarrow[\t{SP}]{} & \CC & | |
\Em | |
$$ | |
i.e. | |
$$ | |
\t{SP} \circ \Bmp \t{Rot}_{2 \phi} & 0 \\ 0 & 1 \Emp | |
= [ \t{Rot}_\phi ] \circ \t{SP} | |
~~:~ S^2 \to \CC | |
$$ | |
where | |
$\t{Rot}_{\phi} | |
\equiv \Bmp \cos(\phi) & - \sin(\phi) \\ \sin(\phi) & \cos(\phi) \Emp$. | |
**N.B.** | |
- On the LHS, $\Bmp \t{Rot}_{\phi} & 0 \\ 0 & 1 \Emp \in \RR^3$ represents usual linear transform | |
by matrix. | |
- On the RHS, $[ \t{Rot}_\phi ]$ represents mobius transform with the entry | |
given by $\t{Rot}$ matrix. | |
***Proof*** | |
We will show | |
$ | |
\t{SP} \circ \Bmp \t{Rot}_{2 \phi} & 0 \\ 0 & 1 \Emp \circ \t{SP}^{-1} | |
= [ \t{Rot}_\phi ] | |
~:~ \CC \to \CC | |
$. | |
We note that: | |
$$ | |
\Ba | |
[ \t{Rot}_\phi ] (z) | |
&= | |
\dfrac{ | |
\cos(t) \sin(t) (|z|^2 - 1 ) | |
+ (\cos^2(t) - \sin^2(t)) x + i y | |
}{|\sin(t) z + \cos(t)|^2} \\ | |
&= | |
\dfrac{ | |
\frac{\sin(2t)}{2} (|z|^2 - 1 ) | |
+ \cos(2t) x + i y | |
}{ | |
\sin^2(t) |z|^2 + \cos^2(t) + 2 \sin(t) \cos(t) x | |
} \\ | |
&= | |
\dfrac{ | |
\frac{1}{2} \sin(2t) (|z|^2 - 1 ) | |
+ \cos(2t) x + i y | |
}{ | |
\frac{1}{2} | |
\Paren{ | |
|z|^2 + 1 - \cos(2t) (|z|^2 - 1) | |
} | |
+ \sin(2t) x | |
} \\ | |
&= | |
\dfrac{ | |
\sin(2t) (|z|^2 - 1 ) | |
+ \cos(2t) 2 x + i 2 y | |
}{ | |
|z|^2 + 1 - \cos(2t) (|z|^2 - 1) | |
+ \sin(2t) 2 x | |
}. | |
\Ea | |
$$ | |
Also, we see: | |
$$ | |
\Ba | |
\t{SP}^{-1}(z) | |
&= \dfrac{1}{|z|^2 + 1} \Bmp |z|^2 - 1 \\ 2 z \Emp, | |
= \dfrac{1}{|z|^2 + 1} \Bmp |z|^2 - 1 \\ 2 x \\ 2 y \Emp, | |
\\ | |
\Bmp \t{Rot}_{2 \phi} & 0 \\ 0 & 1 \Emp \circ \t{SP}^{-1} (z) | |
&= | |
\dfrac{1}{|z|^2 + 1} | |
\Bmp | |
\cos(2t) (|z|^2 - 1) - \sin(2t) 2 x \\ | |
\sin(2t) (|z|^2 - 1) + \cos(2t) 2 x \\ | |
2 y | |
\Emp, | |
\Ea | |
$$ | |
$$ | |
\Ba | |
\t{SP} &\circ \Bmp \t{Rot}_{2 \phi} & 0 \\ 0 & 1 \Emp \circ \t{SP}^{-1} (z) \\ | |
&= | |
\dfrac{1}{ | |
1 - \frac{1}{|z|^2 + 1} (\cos(2t) (|z|^2 - 1) - \sin(2t) 2 x) | |
} | |
\dfrac{1}{|z|^2 + 1} | |
\Bmp | |
\sin(2t) (|z|^2 - 1) + \cos(2t) 2 x \\ | |
2 y | |
\Emp \\ | |
&= | |
\dfrac{1}{ | |
|z|^2 + 1 - (\cos(2t) (|z|^2 - 1) - \sin(2t) 2 x) | |
} | |
\Bmp | |
\sin(2t) (|z|^2 - 1) + \cos(2t) 2 x \\ | |
2 y | |
\Emp. | |
\Ea | |
$$ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
$$$ | |
% From AsciiMath | |
\newcommand{\bb}[0]{\mathbf} | |
\newcommand{\bbb}[0]{\mathbb} | |
\newcommand{\cc}[0]{\mathcal} | |
\newcommand{\RR}[0]{\bbb{R}} | |
\newcommand{\CC}[0]{\bbb{C}} | |
\newcommand{\xx}[0]{\times} | |
\newcommand{\del}[0]{\partial} | |
% Quick begin/end | |
\newcommand{\Ba}[0]{\begin{aligned}} | |
\newcommand{\Ea}[0]{\end{aligned}} | |
\newcommand{\Bc}[0]{\begin{cases}} | |
\newcommand{\Ec}[0]{\end{cases}} | |
\newcommand{\Bm}[0]{\begin{matrix}} | |
\newcommand{\Em}[0]{\end{matrix}} | |
\newcommand{\Bmp}[0]{\begin{pmatrix}} % round bracket | |
\newcommand{\Emp}[0]{\end{pmatrix}} | |
\newcommand{\Bms}[0]{\begin{bmatrix}} % square bracket | |
\newcommand{\Ems}[0]{\end{bmatrix}} | |
\newcommand{\Bmc}[0]{\begin{Bmatrix}} % curley bracket | |
\newcommand{\Emc}[0]{\end{Bmatrix}} | |
% Others | |
\newcommand{\t}[0]{\text} | |
\newcommand{\Abs}[1]{\left|#1\right|} | |
\newcommand{\Paren}[1]{\left(#1\right)} | |
\newcommand{\defiff}[0]{\overset{\text{def}}{\iff}} | |
\newcommand\ddfrac[2]{{\displaystyle\frac{\displaystyle #1}{\displaystyle #2}}} | |
$$$ | |
## Poincare's half-plane model | |
**N.B.** | |
- In this section, we assume $m \in \cc{M}_\RR$. | |
### Def. 1 | |
We define $\bbb{H} \equiv \RR \xx i \RR_{\gt 0} \subset \CC$ | |
and metric tensor $g_{x, y} = \dfrac{1}{y^2} I$. | |
### Prop. 2 | |
$\t{Range}_m(\bbb{H}) = \bbb{H}$. | |
***Proof*** | |
Given $y \gt 0$, from previously obtained formula, we see: | |
$$ | |
\t{Im}(m(z)) = \dfrac{y}{|c z + d|^2} \gt 0. | |
$$ | |
### Prop. 3 | |
Writing Jacobian $J \equiv \del_{x,y} m$, | |
then $J^T g_{m(x, y)} J = g_{x, y}$ (i.e. $m$ is isometry). | |
***Proof*** | |
First, note that the complex derivative of $m$ is: | |
$$ | |
\del_z m | |
= \frac{1}{(c z + d)^2} ( -c (a z + b) + (c z + d) a) | |
= \frac{ad - bc}{(c z + d)^2} = \frac{1}{(c z + d)^2}. | |
$$ | |
Second, we see the complex derivative relates to the Jacobian as: | |
$$ | |
J = \del_{x, y} m | |
= | |
\Bmp | |
\t{Re}(\del_z m) & - \t{Im}(\del_z m) \\ | |
\t{Im}(\del_z m) & \t{Re}(\del_z m) | |
\Emp | |
$$ | |
thus, | |
$$ | |
J^T g_{m(z)} J | |
= \frac{1}{(\t{Im}(m(z)))^2} J^T J | |
= \frac{1}{(\t{Im}(m(z)))^2} |\del_z m|^2 I | |
= \frac{1}{\dfrac{y^2}{|cz + d|^2}} \dfrac{1}{|cz + d|^2} I = g_z. | |
$$ | |
### Prop. 4 | |
$$ | |
m(i) = x + i y | |
\iff | |
m = | |
\Bms | |
y^{1/2} \Paren{\cos(t) + \frac{x}{y} \sin(t)} & | |
y^{1/2} \Paren{- \sin(t) + \frac{x}{y} \cos(t)} \\ | |
y^{-1/2} \sin(t) & y^{-1/2} \cos(t) | |
\Ems. | |
$$ | |
**N.B.** | |
- This means $\forall z \in \bbb{H}. \exists m \in \cc{M}_\RR. m(i) = z$ | |
(i.e. $\cc{M}_\RR$ acts transitively on $\bbb{H}$). | |
- Especially for $m(i) = i$ (aka stabilizer of $i$), we have $m = \Bms \t{Rot}_t \Ems$, | |
which can be seen from **Mobius transform: Prop. 5**. | |
***Proof*** | |
From previous formula, we know: | |
$$ | |
m(i) | |
= \dfrac{1}{|c z + d|^2} | |
\Paren{ | |
(a c |z|^2 + b d + (a d + b c) x) + i y} | |
= \dfrac{1}{c^2 + d^2} (ac + bd + i). | |
$$ | |
Therefore, noting $ad - bc = 1$, we have: | |
$$ | |
\Ba | |
m(i) = x + i y | |
&\iff | |
\Bc | |
y &= \dfrac{1}{c^2 + d^2} \\ | |
x &= \dfrac{ac + bd}{c^2 + d^2} \\ | |
\Ec | |
\iff | |
\Bc | |
\dfrac{1}{y} &= c^2 + d^2 \\ | |
\dfrac{x}{y} &= ac + bd. \\ | |
\Ec \\\\ | |
&\iff | |
\Bc | |
\dfrac{1}{y} &= c^2 + d^2 \\ | |
\Bmp 1 \\ \frac{x}{y} \Emp | |
&= | |
\Bmp d & -c \\ c & d \Emp | |
\Bmp a \\ b \Emp. | |
\Ec | |
\Ea | |
$$ | |
So, by writing $(c, d) = (y^{-1/2} \sin(t), y^{-1/2} \cos(t))$, we see: | |
$$ | |
\Ba | |
\Bmp 1 \\ \frac{x}{y} \Emp | |
&= | |
\Bmp d & -c \\ c & d \Emp | |
\Bmp a \\ b \Emp \\ | |
&\iff | |
\Bmp 1 \\ \frac{x}{y} \Emp | |
= | |
y^{-1/2} \; \t{Rot}_t | |
\Bmp a \\ b \Emp \\ | |
&\iff | |
\Bmp a \\ b \Emp | |
= | |
y^{1/2} | |
\t{Rot}_{-t} | |
\Bmp 1 \\ \frac{x}{y} \Emp | |
= | |
y^{1/2} | |
\Bmp | |
\cos(t) + \frac{x}{y} \sin(t) \\ | |
- \sin(t) + \frac{x}{y} \cos(t) | |
\Emp. | |
\Ea | |
$$ | |
### Prop. 6 | |
Hyperbolic line (geodesic curve) from geodesic equation | |
??? | |
### Prop. 7 | |
Constant velocity geodesic trajectory from $i$ xx | |
??? |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
$$$ | |
% From AsciiMath | |
\newcommand{\bb}[0]{\mathbf} | |
\newcommand{\bbb}[0]{\mathbb} | |
\newcommand{\cc}[0]{\mathcal} | |
\newcommand{\RR}[0]{\bbb{R}} | |
\newcommand{\CC}[0]{\bbb{C}} | |
\newcommand{\xx}[0]{\times} | |
\newcommand{\del}[0]{\partial} | |
% Quick begin/end | |
\newcommand{\Ba}[0]{\begin{aligned}} | |
\newcommand{\Ea}[0]{\end{aligned}} | |
\newcommand{\Bc}[0]{\begin{cases}} | |
\newcommand{\Ec}[0]{\end{cases}} | |
\newcommand{\Bm}[0]{\begin{matrix}} | |
\newcommand{\Em}[0]{\end{matrix}} | |
\newcommand{\Bmp}[0]{\begin{pmatrix}} % round bracket | |
\newcommand{\Emp}[0]{\end{pmatrix}} | |
\newcommand{\Bms}[0]{\begin{bmatrix}} % square bracket | |
\newcommand{\Ems}[0]{\end{bmatrix}} | |
\newcommand{\Bmc}[0]{\begin{Bmatrix}} % curley bracket | |
\newcommand{\Emc}[0]{\end{Bmatrix}} | |
% Others | |
\newcommand{\t}[0]{\text} | |
\newcommand{\Abs}[1]{\left|#1\right|} | |
\newcommand{\Paren}[1]{\left(#1\right)} | |
\newcommand{\defiff}[0]{\overset{\text{def}}{\iff}} | |
\newcommand\ddfrac[2]{{\displaystyle\frac{\displaystyle #1}{\displaystyle #2}}} | |
$$$ | |
## Cayley transform | |
### Def. 1 | |
Define $\t{CT} = \Bms 1 & -i \\ 1 & i \Ems \in \cc{M}$, i.e. | |
$\t{CT}(z) \equiv \dfrac{z - i}{z + i}$. | |
***N.B.*** | |
- $|\t{CT}(z)|^2 = \dfrac{|z - i|^2}{|z + i|^2} = \dfrac{x^2 + (y - 1)^2}{x^2 + (y + 1)^2}$, | |
thus $y \gt 0 \iff |CT(z)| \lt 1$ and so $\bbb{H} \stackrel{\t{CT}}{\cong} \bbb{D}$. | |
- Via matrix inverse (up to scale), we have $\t{CT}^{-1} = \Bms 1 & 1 \\ i & -i \Ems$. | |
### Prop. 2 (Cayley transform is isometry) | |
Writing the Jacobian $J = \del_{(x, y)} \t{CT}$, | |
then we have $J^T g_{\bbb{D}} J = g_{\bbb{H}}$ i.e. | |
$$ \dfrac{4}{(|\t{CT}(z)|^2 - 1)^2} J^T J = \dfrac{1}{y^2} I. $$ | |
***Proof*** | |
(Cf. **Poincare's half-plane model : Prop. 3**) | |
Noting $\del_z m = \dfrac{ad - bc}{(cz + d)^2}$, we have $\del_z \t{CT} = \dfrac{2i}{(z + i)^2}$. Thus, | |
$$ | |
\Ba | |
J^T J &= |\del_z \t{CT}|^2 I = \dfrac{4}{|z + i|^2} I, \\ | |
\dfrac{4}{(|\t{CT}(z)|^2 - 1)^2} J^T J | |
&= \dfrac{4}{(|\t{CT}(z)|^2 - 1)^2} \dfrac{4}{|z + i|^2} I | |
= \dfrac{16}{(|z - i|^2 - |z + i|^2)^2} I \\ | |
&= \dfrac{16}{(4 y)^2} I = \dfrac{1}{y^2} I. | |
\Ea | |
$$ | |
## Hyperbolic stereographic projection | |
(cf. [Stereographic projection](https://hi-ogawa.github.io/markdown-tex/?id=250f2363b93b83aec636bba353f183d4&filename=markdown-tex-demo.txt)) | |
***Notations*** | |
- $\bbb{B} \in \RR^3 \equiv \{ (x_0, \bb{x}) \mid x_0 \le -1 \;\wedge\; |x_0|^2 - |\bb{x}|^2 = 1 \}$ | |
: hyperboloid bottom sheet, | |
- $\bbb{D} \in \RR^2 \equiv \{ \bb{y} \mid |y|^2 \lt 1 \} $ : open unit disk, | |
### Def. 1 | |
Define $F : \bbb{B} \to \bbb{D}$ by $F(x_0, \bb{x}) \equiv \dfrac{\bb{x}}{1 - x_0}$. | |
**N.B.** This is well-defined since: | |
$$ | |
\Abs{ \dfrac{\bb{x}}{1 - x_0} }^2 | |
= \dfrac{\Abs{\bb{x}}^2}{(1 - x_0)^2} | |
= \dfrac{x_0^2 - 1}{(x_0 - 1)^2} | |
= \dfrac{x_0 + 1}{x_0 - 1} | |
= 1 - \dfrac{2}{1 - x_0} \in (0, 1). | |
$$ | |
### Prop. 2 | |
Given $\bb{y} = F(x_0, \bb{x}) = \dfrac{\bb{x}}{1 - x_0} \in \bbb{D}$, we have: | |
$$ | |
\Ba | |
F^{-1}(\bb{y}) | |
&= \Paren{ \dfrac{|\bb{y}|^2 + 1}{|\bb{y}|^2 - 1}, \dfrac{- 2 \bb{y}}{|\bb{y}|^2 - 1} }. | |
\Ea | |
$$ | |
***Proof*** | |
Given $\bb{y} = \dfrac{\bb{x}}{1 - x_0}$, we see: | |
$$ | |
\Ba | |
\Abs{\bb{y}}^2 | |
= \Abs{ \frac{\bb{x}}{1 - x_0} }^2 | |
= \dfrac{x_0 + 1}{x_0 - 1} | |
= 1 - \dfrac{2}{1 - x_0} | |
\implies | |
x_0 | |
= \frac{|\bb{y}|^2 + 1}{|\bb{y}|^2 - 1} | |
= 1 + \dfrac{2}{|\bb{y}|^2 - 1} | |
\Ea | |
$$ | |
Thus | |
$$ | |
\bb{x} = (1 - x_0) \bb{y} = \frac{- 2}{|\bb{y}|^2 - 1} \bb{y}. | |
$$ | |
### Prop. 3 | |
Writing $G(\bb{y}) = F^{-1}(\bb{y})$ and its Jacobian $J = \del_y G$, we have: | |
$$ | |
J^T \eta J = \dfrac{4}{(|\bb{y}|^2 - 1)^2} I, | |
$$ | |
where $~\eta = \Bmp -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \Emp$. | |
**N.B.** We obtained a metric on Poincare's disk by pull-backing Minkowski metric on Hyperboloid. | |
***Proof*** | |
First we note: | |
$$ | |
\del_y \dfrac{1}{|\bb{y}|^2 - 1} | |
= - 2 \dfrac{\bb{y}^T}{(|\bb{y}|^2 - 1)^2} \in \RR^{1 \xx n}. | |
$$ | |
By separating components as: | |
$$ | |
\del_y G | |
= \Bmp | |
\del_y x_0 &\in \RR^{1 \times n} \\ | |
\del_y \bb{x} &\in \RR^{n \times n} | |
\Emp, | |
$$ | |
we have: | |
$$ | |
\Ba | |
\del_y x_0 | |
&= \del_y \Paren{ 1 + \frac{2}{|\bb{y}|^2 - 1} } | |
= \frac{-1}{(|y|^2 - 1)^2} 4 \bb{y}^T \\ | |
\del_y \bb{x} | |
&= \del_y \frac{- 2 \bb{y}}{|\bb{y}|^2 - 1} | |
= - 2 | |
\Paren{ | |
\frac{1}{|\bb{y}|^2 - 1} I + | |
\bb{y} \; \del_y \frac{1}{|\bb{y}|^2 - 1} | |
} \\ | |
&= - 2 | |
\Paren{ | |
\frac{1}{|\bb{y}|^2 - 1} I | |
- 2 \frac{\bb{y} \bb{y}^T}{(|\bb{y}|^2 - 1)^2} | |
}, \\ | |
&= \frac{- 1}{(|y|^2 - 1)^2} 2 | |
\Paren{ | |
(|y|^2 - 1) I | |
- 2 \bb{y} \bb{y}^T | |
}, \\ | |
J &= | |
\frac{- 1}{(|y|^2 - 1)^2} | |
\Bmp | |
4 \bb{y}^T \\ | |
2 | |
\Paren{ | |
(|y|^2 - 1) I | |
- 2 \bb{y} \bb{y}^T | |
} | |
\Emp. | |
\Ea | |
$$ | |
Therefore: | |
$$ | |
\Ba | |
J^T \mu J &= | |
\Bmp | |
(\del_y x_0)^T \; | |
(\del_y \bb{x})^T | |
\Emp | |
\Bmp | |
- \del_y x_0 \\ | |
\del_y \bb{x} | |
\Emp | |
= | |
- (\del_y x_0)^T \del_y x_0 | |
+ (\del_y \bb{x})^T \del_y \bb{x} \\ | |
&= | |
\frac{1}{(|y|^2 - 1)^4} | |
\Paren{ | |
- 16 \bb{y} \bb{y}^T | |
+ 4 | |
\Paren{ | |
(|y|^2 - 1)^2 I | |
+ 4 |y|^2 \bb{y} \bb{y}^T | |
- 4 (|y|^2 - 1) \bb{y} \bb{y}^T | |
} | |
} \\ | |
&= | |
\frac{1}{(|y|^2 - 1)^4} 4 (|y|^2 - 1)^2 I \\ | |
&= | |
\frac{4}{(|y|^2 - 1)^2} I. | |
\Ea | |
$$ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment