Last active
June 26, 2021 09:59
-
-
Save hi-ogawa/e40372524f96337f1f2066ad332b4d2b to your computer and use it in GitHub Desktop.
curvature
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
- [Curve](https://hi-ogawa.github.io/markdown-tex/?id=e40372524f96337f1f2066ad332b4d2b&filename=curvature-00-curve) | |
- [Surface](https://hi-ogawa.github.io/markdown-tex/?id=e40372524f96337f1f2066ad332b4d2b&filename=curvature-01-surface) | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
$$$ | |
% From AsciiMath | |
\newcommand{\bb}[0]{\mathbf} | |
\newcommand{\bbb}[0]{\mathbb} | |
\newcommand{\cc}[0]{\mathcal} | |
\newcommand{\RR}[0]{\bbb{R}} | |
\newcommand{\CC}[0]{\bbb{C}} | |
\newcommand{\xx}[0]{\times} | |
\newcommand{\del}[0]{\partial} | |
% Quick begin/end | |
\newcommand{\Ba}[0]{\begin{aligned}} | |
\newcommand{\Ea}[0]{\end{aligned}} | |
\newcommand{\Bc}[0]{\begin{cases}} | |
\newcommand{\Ec}[0]{\end{cases}} | |
\newcommand{\Bm}[0]{\begin{matrix}} | |
\newcommand{\Em}[0]{\end{matrix}} | |
\newcommand{\Bmp}[0]{\begin{pmatrix}} % round bracket | |
\newcommand{\Emp}[0]{\end{pmatrix}} | |
\newcommand{\Bms}[0]{\begin{bmatrix}} % square bracket | |
\newcommand{\Ems}[0]{\end{bmatrix}} | |
\newcommand{\Bmc}[0]{\begin{Bmatrix}} % curley bracket | |
\newcommand{\Emc}[0]{\end{Bmatrix}} | |
% Others | |
\newcommand{\t}[0]{\text} | |
\newcommand{\l}[0]{\left} | |
\renewcommand{\r}[0]{\right} | |
\newcommand\ddfrac[2]{{\displaystyle\frac{\displaystyle #1}{\displaystyle #2}}} | |
$$$ | |
## Curve | |
**Notations** | |
- $\gamma(t) : \RR \to \RR^2$ : twice differentiable curve, | |
- $\l< \bb{a}, \bb{b} \r> \equiv \bb{a}^T \bb{b}$, | |
- $\hat{\bb{a}} \equiv \dfrac{\bb{a}}{|\bb{a}|}$. | |
### Def. 1 (Osculating circle) | |
Define $\bb{v}(t \mid t_0) \in \RR^2$ s.t. | |
- $\l< \bb{v}(t \mid t_0), \gamma'(t_0) \r> = 0$, | |
- $|\gamma(t) - (\gamma(t_0) + \bb{v}(t \mid t_0))| = |\bb{v}(t \mid t_0)|$. | |
**N.B.** | |
- We ocasionally omit $t, t_0$ and $t_0$ and write e.g. $\bb{v} = \bb{v}(t) = \bb{v}(t \mid t_0)$. | |
- Geometrically speaking, it gives a circle s.t. | |
- center : $\gamma(t_0) + \bb{v}(t \mid t_0)$, | |
- tangent line: $\gamma(s) + \gamma'(t_0) (s - t_0)$ at $\gamma(t_0)$, | |
- passing points: $\gamma(t)$, $\gamma(t_0)$. | |
- Such circle can be still found even when $\gamma(t) \in \RR^3$. | |
- It's not well defined if | |
- $\gamma'(t_0) = \bb{0}$ or | |
- $\l< \gamma(t) - \gamma(t_0), \gamma'(t_0) \r> = 0$ | |
### Prop. 2 | |
$$ \l< \bb{v}(t_0 \mid t_0), \gamma''(t_0) \r> = |\gamma'(t_0)|^2$$ | |
**N.B.** | |
- If $|\gamma'(t)|$ : constant, then we have | |
$0 = \del_t |\gamma'(t)| = \dfrac{\l< \gamma'(t), \gamma''(t) \r>}{|\gamma'(t)|}$. | |
Thus it gives: | |
$$ | |
\bb{v}(t_0 \mid t_0) | |
= \dfrac{|\gamma'(t_0)|^2}{|\gamma''(t_0)|^2} \gamma''(t_0) | |
= \dfrac{|\gamma'(t_0)|^2}{|\gamma''(t_0)|} \hat{\gamma''}(t_0), | |
$$ | |
and especially if $|\gamma'(t_0)| = 1$, then | |
$\bb{v} = \dfrac{1}{|\gamma''(t_0)|} \hat{\gamma''}(t_0)$. | |
***Proof*** | |
From Tayler's theorem, we note that: | |
$$ | |
\Ba | |
\l<\bb{v}(t), \gamma(t) - \gamma(t_0) \r> | |
&= \l<\bb{v}(t), \gamma'(t_0) \r> (t - t_0) | |
+ \l<\bb{v}(t), \gamma''(t_0) \r> \frac{1}{2} (t - t_0)^2 | |
+ O((t - t_0)^3 \\ | |
&= | |
\frac{1}{2} | |
( | |
\l<\bb{v}(t), \gamma''(t_0) \r> | |
+ O(t - t_0) | |
) | |
(t - t_0)^2 | |
\Ea | |
$$ | |
Thus, we have: | |
$$ | |
\Ba | |
|\bb{v}(t)| &= |\gamma(t) - (\gamma(t_0) + \bb{v}(t))| \\ | |
&\iff | |
|\gamma(t) - \gamma(t_0)|^2 | |
= 2 \l<\bb{v}(t), \gamma(t) - \gamma(t_0) \r> \\ | |
&\iff | |
\l| \frac{\gamma(t) - \gamma(t_0)}{t - t_0} \r|^2 | |
= 2 \frac{ \l<\bb{v}(t), \gamma(t) - \gamma(t_0) \r>}{(t - t_0)^2} | |
= \l<\bb{v}(t), \gamma''(t_0) \r> + O(t - t_0). | |
\Ea | |
$$ | |
### Prop. 3 | |
Define $s : \RR \to \RR : t \mapsto s(t)$ by | |
$ | |
s(t) \equiv \int^t du |\gamma'(u)| | |
$ | |
and write its inverse as $t(s)$. | |
Also define $\eta(s) \equiv \gamma(t(s))$, then we have: | |
$$ | |
\eta''(s) | |
= \frac{1}{|\gamma'|^2} (I - \hat{\gamma'} \hat{\gamma'}^T) \gamma'' | |
= \frac{1}{|\gamma'|^4} (|\gamma'|^2 I - \gamma' \gamma'^T) \gamma'' | |
= \frac{\!\!-1}{\;|\gamma'|^4} \gamma' \xx (\gamma' \xx \gamma'') | |
$$ | |
**N.B.** | |
- We denote e.g. $\gamma' \equiv \gamma'(t(s))$ and $t' \equiv t'(s)$. | |
***Proof*** | |
We note that $s'(t) = |\gamma'(s(t))|$ and | |
$t'(s) = \dfrac{1}{s'(t(s))} = \dfrac{1}{|\gamma'(t(s))|}$. | |
Then we see: | |
$$ | |
t''(s) | |
= \del_s \frac{1}{|\gamma'|} | |
= - |\gamma'|^{-2} \frac{\gamma'^T}{|\gamma'|} \gamma'' t' | |
= - \frac{\l< \gamma', \gamma'' \r>}{|\gamma'|^4}. | |
$$ | |
Thus: | |
$$ | |
\Ba | |
\eta''(s) | |
= \gamma'' (t')^2 + \gamma' t'' | |
= \gamma'' \frac{1}{|\gamma'|^2} | |
- \gamma' \frac{\l< \gamma', \gamma'' \r>}{|\gamma'|^4} | |
= \frac{1}{|\gamma'|^2} | |
(I - \frac{\gamma' \gamma'^T}{|\gamma'|^2}) \gamma''. | |
\Ea | |
$$ | |
### Prop. 4 | |
For $\gamma(x) \equiv \Bmp x \\ y(x) \Emp$ and $\eta$ from **Prop.3**, we have: | |
$$ | |
\eta'' | |
= \frac{y''}{(1 + (y')^2)^2} | |
\Bmp -y' \\ 1 \Emp. | |
$$ | |
***Proof*** | |
We have | |
$ | |
\gamma' = \Bmp 1 \\ y' \Emp | |
$ | |
and | |
$ | |
\gamma'' = \Bmp 0 \\ y'' \Emp | |
$ | |
, thus: | |
- $|\gamma'|^2 = 1 + (y')^2$, | |
- $ | |
|\gamma'|^2 I - \gamma' \gamma'^T | |
= | |
\Bmp | |
1 + y'^2 - 1 & - y' \\ | |
- y' & 1 + y'^2 - y'^2 | |
\Emp | |
= | |
\Bmp | |
y'^2 & - y' \\ | |
- y' & 1 | |
\Emp | |
$. | |
Therefore: | |
$$ | |
\Ba | |
\eta'' | |
&= \frac{1}{|\gamma'|^4} (|\gamma'|^2 I - \gamma' \gamma'^T) \gamma'' | |
= \frac{1}{1 + (y')^2} | |
\Bmp | |
y'^2 & - y' \\ | |
- y' & 1 | |
\Emp | |
\Bmp 0 \\ y'' \Emp \\ | |
&= \frac{y''}{(1 + (y')^2)^2} | |
\Bmp -y' \\ 1 \Emp. | |
\Ea | |
$$ | |
### Prop. 5 | |
For $f(x, y(x)) = 0$ and $\gamma$, $\eta$ from **Prop. 4**, we have: | |
$$ | |
\eta'' | |
= \frac{f_{11} f_2^2 - 2 f_{12} f_1 f_2 + f_{22} f_1^2}{(f_1^2 + f_2^2)^2} | |
\Bmp f_1 \\ f_2 \Emp | |
= - | |
\frac{ | |
\quad \l|\Bmp f_2 \\ - f_1 \Emp \r|_{\bb{D}^2f}^2 | |
}{ | |
\l|\Bmp f_1 \\ f_2 \Emp \r|^2 | |
} \Bmp f_1 \\ f_2 \Emp | |
$$ | |
**N.B.** | |
- Given $f : \RR^n \to \RR^{n - 1}$ with $\del_\bb{y} f(x, \bb{y})$ is invertible | |
where $x \in \RR$ and $\bb{y} \in \RR^{n - 1}$, | |
by implicit function theorem, there (locally) exists | |
$x \mapsto \bb{y}(x)$ s.t. $f(x, \bb{y}(x))$. | |
- We denote $f_1 \equiv \del_1 f(x, y)$ and $f_2 \equiv \del_2 f(x, y)$. | |
- We denote $|v|_A^2 \equiv \l< \bb{v}, A \bb{v} \r> = \bb{v}^T A \bb{v}$. | |
***Proof*** | |
Since $f(x, y(x)) = 0$, we have: | |
- $ | |
0 = \del_x f(x, y(x)) | |
= \bb{D} f \cdot \Bmp 1 \\ y' \Emp | |
= f_1 + f_2 \, y' | |
$, | |
- $ | |
0 = (\del_x)^2 f(x, y(x)) | |
= \bb{D} f \cdot \Bmp 0 \\ y'' \Emp + \l| \Bmp 1 \\ y' \Emp \r|_{\bb{D}^2 f}^2 | |
= f_2 \, y'' + \l| \Bmp 1 \\ y' \Emp \r|_{\bb{D}^2 f}^2 | |
$. | |
Therefore: | |
- $f_2 \, y' = - f_1$, | |
- $ | |
(f_2)^3 \, y'' | |
= - (f_2)^2 \l| \Bmp 1 \\ y' \Emp \r|_{\bb{D}^2 f}^2 | |
= - \l| \Bmp f_2 \\ f_2 y' \Emp \r|_{\bb{D}^2 f}^2 | |
= - \l| \Bmp f_2 \\ - f_1 \Emp \r|_{\bb{D}^2 f}^2 | |
$ | |
and thus: | |
$$ | |
\Ba | |
\eta'' | |
&= \frac{y''}{(1 + (y')^2)^2} | |
\Bmp -y' \\ 1 \Emp | |
= \frac{(f_2)^3 y''}{((f_2)^2 + (f_2 \, y')^2)^2} | |
\Bmp - f_2 \, y' \\ f_2 \Emp | |
= - | |
\frac{ | |
\l| \Bmp f_2 \\ - f_1 \Emp \r|_{\bb{D}^2 f}^2 | |
}{((f_1)^2 + (f_2)^2)^2} | |
\Bmp f_1 \\ f_2 \Emp. | |
\Ea | |
$$ | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
$$$ | |
% From AsciiMath | |
\newcommand{\bb}[0]{\mathbf} | |
\newcommand{\bbb}[0]{\mathbb} | |
\newcommand{\cc}[0]{\mathcal} | |
\newcommand{\RR}[0]{\bbb{R}} | |
\newcommand{\CC}[0]{\bbb{C}} | |
\newcommand{\xx}[0]{\times} | |
\newcommand{\del}[0]{\partial} | |
% Quick begin/end | |
\newcommand{\Ba}[0]{\begin{aligned}} | |
\newcommand{\Ea}[0]{\end{aligned}} | |
\newcommand{\Bc}[0]{\begin{cases}} | |
\newcommand{\Ec}[0]{\end{cases}} | |
\newcommand{\Bm}[0]{\begin{matrix}} | |
\newcommand{\Em}[0]{\end{matrix}} | |
\newcommand{\Bmp}[0]{\begin{pmatrix}} % round bracket | |
\newcommand{\Emp}[0]{\end{pmatrix}} | |
% Others | |
\newcommand{\t}[0]{\text} | |
\newcommand{\l}[0]{\left} | |
\renewcommand{\r}[0]{\right} | |
\newcommand{\bbD}[0]{\mathbf{D}} | |
$$$ | |
## Surface | |
**Goals** | |
- Prove classical results using usual Jacobian and matrix manipulation | |
(i.e. without differential form etc...) | |
**Notations** | |
For $F : \RR^2 \to \RR^3$, we denote: | |
- $F(u, v)$, | |
- $F_u = \del_u F$, | |
- $\bb{D} F = \Bmp F_u, F_v\Emp \in \RR^{3 \xx 2}$, | |
- $g = (\bb{D} F)^T \bb{D} F \in \RR^{2 \xx 2}$ | |
For quadratic $Q \in \RR^{n \xx n}$, we denote: | |
- $Q[\bb{x}, \bb{y}] = \l< \bb{x}, Q \bb{y} \r> = \bb{x}^T Q \bb{y}$. | |
**Preliminary. 1** | |
- $ | |
|g| = | |
\l|\Bm | |
|F_u|^2 & \l< F_u, F_v \r> \\ | |
\l< F_u, F_u \r> & |F_v|^2 | |
\Em\r| | |
= | |
|F_u|^2 |F_v|^2 - \l< F_u, F_v \r>^2 | |
= |F_u \xx F_v|^2 | |
$. | |
**Preliminary. 2** | |
In **Prop.3** of the [previous section](https://hi-ogawa.github.io/markdown-tex/?id=e40372524f96337f1f2066ad332b4d2b&filename=curvature-00-curve), | |
we found that | |
$$ | |
\eta''(s) | |
= \frac{1}{|\gamma'|^4} (|\gamma'|^2 I - \gamma' \gamma'^T) \gamma'' | |
= \frac{\!\!-1}{\;|\gamma'|^4} \gamma' \xx (\gamma' \xx \gamma''). | |
$$ | |
where | |
- $\gamma : \RR \to \RR^2$ : curve, | |
- $\eta(s) = \gamma(t(s))$ : arc-length parametrized curve. | |
Here we consider the surface defined by $F : \RR^2 \to \RR^3$ and | |
the curve $\gamma(t) = F(\mu(t)) : \RR \to \RR^2 \to \RR^3$ within the surface. | |
Then we deine: | |
- $N \equiv \widehat{F_u \xx Fv}$ : (right-handed) normal | |
- $k \equiv \l< N, \eta'' \r>$ : normal curvature | |
where arc-length parametrization $\eta(s)$ is naturally defined for | |
3-dimentional case $\gamma : \RR \to \RR^3$ as well. | |
But, note that it's not necessarily $\eta'' \parallel N$ | |
even though it's always $\eta'' \perp \gamma'$ and $N \perp \gamma'$. | |
### Prop.1 | |
$$ | |
k = \frac{ A[\mu', \mu'] }{ g[\mu', \mu'] } | |
$$ | |
where $ | |
A[\bb{x}, \bb{y}] | |
= \l< N, \bb{D}^2 F[\bb{x}, \bb{y}] \r> | |
= \l< N, \bb{D}^2 F \r> [\bb{x}, \bb{y}] | |
$. | |
**N.B.** | |
- More explicitly: | |
$$ | |
\Ba | |
A | |
&= \l< N, \bb{D}^2 F \r> | |
= | |
\Bmp | |
\l< N, F_{uu} \r> & \l< N, F_{uv} \r> \\ | |
\l< N, F_{uv} \r> & \l< N, F_{vv} \r> | |
\Emp | |
= | |
\frac{1}{|F_u \xx F_v|} | |
\Bmp | |
\l< F_u \xx F_v, F_{uu} \r> & \l< F_u \xx F_v, F_{uv} \r> \\ | |
\l< F_u \xx F_v, F_{uv} \r> & \l< F_u \xx F_v, F_{vv} \r> | |
\Emp \\\\ | |
&= | |
\frac{1}{|g|^{1/2}} | |
\Bmp | |
\l< F_u \xx F_v, F_{uu} \r> & \l< F_u \xx F_v, F_{uv} \r> \\ | |
\l< F_u \xx F_v, F_{uv} \r> & \l< F_u \xx F_v, F_{vv} \r> | |
\Emp. | |
\Ea | |
$$ | |
***Proof*** | |
First we note: | |
- $\gamma' = \bb{D}F \cdot \mu'$, | |
- $\gamma'' = \bb{D}^2 F [\mu', \mu'] + \bb{D}F \cdot \mu''$, | |
- $\l< N, \bb{D} F \r> = 0$, | |
- $\l< N, \gamma' \r> = 0$, | |
- $|\gamma'|^2 = \l< \bb{D}F \mu', \bb{D}F \mu' \r> = g[\mu', \mu]$, | |
- $\l< N, \gamma'' \r> = \l< N, \bb{D}^2 F [\mu', \mu'] \r>$. | |
Thus, | |
$$ | |
\l< N, \eta'' \r> | |
= | |
\frac{1}{|\gamma'|^2} | |
\l< N, \gamma'' \r> | |
- | |
\frac{\gamma'^T \gamma''}{|\gamma'|^4} | |
\l< N , \gamma' \r> | |
= | |
\frac{\l< N, \bb{D}^2 F [\mu', \mu'] \r>}{g[\mu', \mu]}. | |
$$ | |
### Prop. 2 | |
Writing $\mu' = g^{-\frac{1}{2}} \bb{x}$ and | |
$B \equiv g^{-\frac{1}{2}} A g^{-\frac{1}{2}}$ , we have: | |
$$ | |
k = \frac{ A[\mu', \mu'] }{ g[\mu', \mu'] } | |
= \frac{ g^{-\frac{1}{2}} A g^{-\frac{1}{2}}[\bb{x}, \bb{x}] } { |\bb{x}|^2 } | |
= B[\hat{\bb{x}}, \hat{\bb{x}}] | |
$$ | |
Thus, denoting its diagonalization by $B = P \Bmp k_1 & 0 \\ 0 & k_2 \Emp P^{-1}$ | |
with $P = \Bmp \bb{x}_1, \bb{x}_2 \Emp$ and $k_1 \ge k_2$, we have: | |
- $\t{max}(k) = k_1$ when $\mu' = \mu'_1 = g^{- \frac{1}{2}} \bb{x}_1$, | |
- $\t{min}(k) = k_2$ when $\mu' = \mu'_2 = g^{- \frac{1}{2}} \bb{x}_2$, | |
- $k = \cos^2(\phi) k_1 + \sin^2(\phi) k_2$ | |
when $\hat{\bb{x}} = \cos(\phi) \bb{x}_1 + \sin(\phi) \bb{x}_2$ | |
(aka. Euler's theorem) | |
- $\bb{x}_1 \perp \bb{x}_2$, | |
- N.B. maximality, minimality and orthogonality comes from usual spectral theorem. | |
Also, for $\gamma'_i = \bb{D} F \mu'_i = \bb{D} F g^{- \frac{1}{2}}\bb{x}_i$ where ($i = 1, 2$), | |
we have $\gamma'_1 \perp \gamma'_2$ since | |
$$ | |
\l< \gamma'_1, \gamma'_2 \r> | |
= \bb{x}_1^T g^{- \frac{1}{2}} g g^{- \frac{1}{2}} \bb{x}_2 | |
= \l< \bb{x}_1, \bb{x}_2 \r> = 0. | |
$$ | |
### Def. 3 | |
- Gaussian curvature : $k_G \equiv k_1 k_2$, | |
- Mean curvature : $k_M \equiv \dfrac{k_1 + k_2}{2}$. | |
### Prop. 4 | |
Noting that $|F_u \xx F_v| = |g|^{1/2}$, | |
$$ | |
\Ba | |
2 k_M | |
&= \t{tr}[B] = \t{tr}[g^{-1} \l< \widehat{F_u \xx F_v}, \bb{D}^2 F \r>] \\ | |
&= | |
\frac{1}{|g|^{3/2}} | |
\t{tr}[\alpha_g^T \l< F_u \xx F_v, \bb{D}^2 F\r> ] \\ | |
&= | |
\frac{1}{|g|^{3/2}} | |
\bigg( | |
|F_v|^2 \l< F_u \xx F_v, F_{uu} \r> | |
+ |F_u|^2 \l< F_u \xx F_v, F_{vv} \r> | |
- 2 \l< F_u, F_v \r> \l< F_u \xx F_v, F_{uv} \r> | |
\bigg). | |
\Ea | |
$$ | |
where we used: | |
- $ | |
\alpha_g^T | |
= \Bmp | |
|F_v|^2 & - \l< F_u, F_v \r> \\ | |
- \l< F_u, F_v \r> & |F_u|^2 | |
\Emp. | |
$ | |
### Prop. 5 | |
$$ | |
\Ba | |
k_G | |
&= \t{det}[B] | |
= \frac{\t{det}[\l< \widehat{F_u \xx F_v}, \bb{D}^2 F \r>]}{\t{det}[g]} | |
= \frac{1}{|g|^2} \t{det}[\l< F_u \xx F_v, \bb{D}^2 F \r>] \\ | |
&= | |
\frac{1}{|g|^2} | |
\bigg( | |
\l< F_u \xx F_v, F_{uu} \r> \l< F_u \xx F_v, F_{vv} \r> | |
- \l< F_u \xx F_v, F_{uv} \r>^2 | |
\bigg). | |
\Ea | |
$$ | |
### Prop. 6 | |
As a special case of $F(u, v) = (u, v, f(u, v))$ (aka. scalar surface), we have: | |
- $F_u = \Bmp 1 \\ 0 \\ f_u \Emp$, $F_v = \Bmp 0 \\ 1 \\ f_v \Emp$, | |
- $F_u \xx F_v = \Bmp - f_u \\ - f_v \\ 1 \Emp $, | |
- $g = |F_u \xx F_v|^2 = 1 + f_u^2 + f_v^2$, | |
- $\l< F_u \xx F_v, \bb{D}^2 F \r> = \bb{D}^2 f$. | |
Thus, | |
$$ | |
\Ba | |
2 k_M | |
&= | |
\dfrac{1}{(1 + f_u^2 + f_v^2)^{3/2}} | |
\bigg( | |
(1 + f_v^2) f_{uu} | |
+ (1 + f_u^2) f_{vv} | |
- 2 f_u f_v f_{uv} | |
\bigg), \\ | |
k_G | |
&= | |
\dfrac{1}{(1 + f_u^2 + f_v^2)^2} | |
( f_{uu} f_{vv} - f_{uv}^2 ). | |
\Ea | |
$$ | |
### Def. 7 (Shape operator) | |
Define $S$ as unique $S \in \RR^{2 \xx 2}$ s.t. | |
$$ | |
\bbD F \cdot S = \bbD N \in \RR^{3 \xx 2}. | |
$$ | |
**N.B.** | |
Uniqueness holds since: | |
$$ | |
\Ba | |
&\bbD F \cdot S = \bbD N \\ | |
&\implies | |
\bbD F^T \cdot \bbD F \cdot S = \bbD F^T \cdot \bbD N \\ | |
&\iff | |
S = (\bbD F^T \cdot \bbD F)^{-1} \cdot \bbD F^T \cdot \bbD N | |
= g^{-1} \cdot \bbD F^T \cdot \bbD N | |
\Ea | |
$$ | |
and its converse holds since $\bbD N \in \t{span}(\bbD F)$. | |
### Prop. 8 | |
$$ | |
S = - g^{-1} \l< N, \bbD^2 F \r> | |
$$ | |
Thus, especially | |
- $\t{tr}[S] = - \t{tr}[g^{-1} \l< N, \bbD^2 F \r>] = - \t{tr}[B] = - (k_1 + k_2)$, | |
- $\det[S] = \det[g^{-1} \l< N, \bbD^2 F \r>] = \det[B] = k_1 k_2$. | |
So, this already captures information about the curvature | |
without going through $B = g^{-1/2} \l< N, \bbD^2 F \r> g^{-1/2}$. | |
***Proof*** | |
It safices to show $\bbD F^T \cdot \bbD N = - \l< N, \bbD^2 F\r>$. | |
From $\bbD F^T \cdot N = 0$, we see that: | |
$$ | |
\Ba | |
0 &= \bbD (\bbD F^T \cdot N) | |
= \bbD^2 F^T \cdot N + \bbD F^T \cdot \bbD N \\ | |
&= \l< N, \bbD^2 F \r> + \bbD F^T \cdot \bbD N. | |
\Ea | |
$$ | |
### Def. 9 (Laplace-Beltrami operator) | |
For $f : \RR^n \to \RR$, define $\Delta f : \RR^n \to \RR$ by: | |
$$ | |
\Delta f | |
\equiv | |
\frac{1}{|g|^{1/2}} \del_i (|g|^{1/2} g^{-1}_{i, j} \del_j f) | |
$$ | |
**N.B.** | |
- We can separate 1st/2nd derivatives as: | |
$$ | |
\Ba | |
\frac{1}{|g|^{1/2}} \del_i (|g|^{1/2} g^{-1}_{i, j} \del_j f) | |
&= | |
g^{-1}_{i, j} \del_{i, j} f | |
+ | |
\frac{1}{|g|^{1/2}} | |
\del_j f \; | |
\del_i (|g|^{1/2} g^{-1}_{i, j} ) \\ | |
&= | |
\t{tr}[g^{-1} \bbD^2 f] | |
+ | |
\frac{1}{|g|^{1/2}} | |
\bbD f | |
\cdot | |
\Bmp | |
\del_i |g|^{1/2} g^{-1}_{i, 1} \\ | |
\del_i |g|^{1/2} g^{-1}_{i, 2} \\ | |
\vdots | |
\Emp. | |
\Ea | |
$$ | |
- For vector-valued function (e.g. $F : \RR^2 \to \RR^3$), we define | |
$\Delta F$ in a pointwise manner (i.e. $\Delta$ for each component). | |
### Prop. 10 | |
$$ | |
\Delta F = 2 k_M N | |
$$ | |
**N.B.** | |
- Here we use a different notation for derivative by | |
$F_1 \equiv = F_u = \del_u F$ and $F_2 \equiv F_v = \del_v F$ since | |
I found that the subscripts $u$ and $v$ are sometimes not easy to discern. | |
***Proof*** | |
It safices to show: | |
- (1) $\bbD F^T \cdot \Delta F = \bb{0} \in \RR^{2}$, i.e. $\Delta F$ doesn't have tangential component, and | |
- (2) $N^T \cdot \Delta F = 2 k_M \in \RR$. | |
First, we show (2). | |
Since $N^T \cdot \bbD F = 0$, the term with 1st derivative vanishes and we have: | |
$$ | |
\l< N, \Delta F \r> | |
= \l< N, \t{tr}[g^{-1} \bbD^2 F] \r> | |
= \t{tr}[g^{-1} \l< N, \bbD^2 f \r>] | |
= 2 k_M. | |
$$ | |
Next, we show (1). | |
Looking at 1st/2nd derivative terms: | |
$$ | |
\bbD F^T \cdot \Delta F | |
= | |
\bbD F^T \cdot \t{tr}[g^{-1} \bbD^2 F] | |
+ | |
\bbD F^T \cdot \bbD F \cdot | |
\frac{1}{|g|^{1/2}} \del_i (|g|^{1/2} g^{-1}_{i, j}) \\ | |
= | |
\bbD F^T \cdot \t{tr}[g^{-1} \bbD^2 F] | |
+ | |
g \cdot | |
\frac{1}{|g|^{1/2}} \del_i (|g|^{1/2} g^{-1}_{i, j}). | |
$$ | |
Here we denote $\beta \in \RR^{2 \xx 2}$ by $g^{-1} = \dfrac{1}{|g|} \beta$, i.e. | |
$$ | |
\beta = | |
\Bmp | |
|F_2|^2 & - \l< F_1, F_2 \r> \\ | |
- \l< F_1, F_2 \r> & |F_1|^2 \\ | |
\Emp. | |
$$ | |
Also remember that $|g| = |F_1 \xx F_2|^2$. | |
Now, expanding the last term: | |
$$ | |
\Ba | |
\del_i (|g|^{1/2} g^{-1}_{i, j}) | |
&= \del_i ( |g|^{-1/2} \beta_{i, j}) | |
= | |
(\del_i |g|^{-1/2}) \; \beta_{i, j} | |
+ | |
|g|^{-1/2} \del_i \beta_{i, j} \\ | |
&= | |
\beta \cdot (\bbD |g|^{-1/2})^T | |
+ | |
|g|^{-1/2} \del_i \beta_{i, j}, | |
\Ea | |
$$ | |
$$ | |
\bbD |g|^{-1/2} | |
= - \frac{1}{2} |g|^{-3/2} \bbD |g| | |
= - |g|^{-3/2} \l< F_1 \xx F_2, \bbD (F_1 \xx F_2) \r>, | |
$$ | |
$$ | |
\del_i \beta_{i, j} | |
= | |
\Bmp | |
\del_1 |F_2|^2 - \del_2 \l< F_1, F_2 \r> \\ | |
- \del_1 \l< F_1, F_2 \r> + \del_2 |F_1|^2 | |
\Emp | |
= | |
\Bmp | |
\l< F_2, F_{12} \r> - \l< F_1, F_{22} \r> \\ | |
\l< F_1, F_{12} \r> - \l< F_{11}, F_2 \r> | |
\Emp, | |
$$ | |
so, we found that (note that $\; g \beta = |g| I \;$): | |
$$ | |
\Ba | |
g \cdot \frac{1}{|g|^{1/2}} \del_i (|g|^{1/2} g^{-1}_{i, j}) | |
&= | |
- \frac{1}{|g|^2} | |
g \cdot \beta \cdot \l< F_1 \xx F_2, \bbD (F_1 \xx F_2) \r>^T | |
+ \frac{1}{|g|} | |
g \cdot (\del_i \beta_{i, j}) \\ | |
&= | |
\frac{1}{|g|} | |
\l( | |
- \l< F_1 \xx F_2, \bbD (F_1 \xx F_2) \r>^T | |
+ g \cdot (\del_i \beta_{i, j}) | |
\r). | |
\Ea | |
$$ | |
Inserting this into the original formula, we obtain: | |
$$ | |
\Ba | |
\bbD F^T \cdot \Delta F | |
&= | |
\bbD F^T \cdot \t{tr}[g^{-1} \bbD^2 F] | |
+ | |
g \cdot | |
\frac{1}{|g|^{1/2}} \del_i (|g|^{1/2} g^{-1}_{i, j}) \\ | |
&= | |
\frac{1}{|g|} | |
\l( | |
\bbD F^T \cdot \t{tr}[\beta \; \bbD^2 F] | |
- \l< F_1 \xx F_2, \bbD (F_1 \xx F_2) \r>^T | |
+ g \cdot (\del_i \beta_{i, j}) | |
\r) | |
\Ea | |
$$ | |
Finally, we're going to expand all terms: | |
$$ | |
\Ba | |
\bbD F^T \cdot \t{tr}[\beta \; \bbD^2 F] | |
&= | |
\t{tr} \l[ | |
\beta \cdot | |
\Bmp | |
\l< F_i, F_{11} \r> & \l< F_i, F_{12} \r> \\ | |
\l< F_i, F_{12} \r> & \l< F_i, F_{22} \r> | |
\Emp | |
\r]_i \\ | |
&= | |
\Bmp | |
|F_2|^2 \l< F_1, F_{11} \r> | |
+ |F_1|^2 \l< F_1, F_{22} \r> | |
- 2 \l< F_1, F_2 \r> \l< F_1, F_{12} \r> \\ | |
|F_2|^2 \l< F_2, F_{11} \r> | |
+ |F_1|^2 \l< F_2, F_{22} \r> | |
- 2 \l< F_1, F_2 \r> \l< F_2, F_{12} \r> | |
\Emp, \\\\ | |
\l< F_1 \xx F_2, \bbD (F_1 \xx F_2) \r>^T | |
&= | |
\Bmp | |
\l< F_1 \xx F_2, \del_1 (F_1 \xx F_2) \r> \\ | |
\l< F_1 \xx F_2, \del_2 (F_1 \xx F_2) \r> | |
\Emp \\ | |
&= | |
\Bmp | |
\l< F_1 \xx F_2, F_{11} \xx F_2 + F_1 \xx F_{12} \r> \\ | |
\l< F_1 \xx F_2, F_1 \xx F_{22} + F_{12} \xx F_2 \r> | |
\Emp \\ | |
&= | |
\Bmp | |
\l< F_1, F_{11} \r> |F_2|^2 - \l< F_1, F_2 \r> \l< F_{11}, F_2 \r> + | |
\l< F_2, F_{12} \r> |F_1|^2 - \l< F_1, F_2 \r> \l< F_1, F_{12} \r> \\ | |
\l< F_2, F_{22} \r> |F_1|^2 - \l< F_1, F_2 \r> \l< F_1, F_{22} \r> + | |
\l< F_1, F_{12} \r> |F_2|^2 - \l< F_1, F_2 \r> \l< F_2, F_{12} \r> | |
\Emp, \\\\ | |
g \cdot \del_i \beta_{i, j} | |
&= | |
g \cdot | |
\Bmp | |
\l< F_2, F_{12} \r> - \l< F_1, F_{22} \r> \\ | |
\l< F_1, F_{12} \r> - \l< F_{11}, F_2 \r> | |
\Emp \\ | |
&= | |
\Bmp | |
|F_1|^2 (\l< F_2, F_{12} \r> - \l< F_1, F_{22} \r>) | |
+ \l< F_1, F_2 \r> ( \l< F_1, F_{12} \r> - \l< F_{11}, F_2 \r> ) \\ | |
\l< F_1, F_2 \r> (\l< F_2, F_{12} \r> - \l< F_1, F_{22} \r>) | |
+ |F_2|^2 (\l< F_1, F_{12} \r> - \l< F_{11}, F_2 \r>) | |
\Emp, | |
\Ea | |
$$ | |
and we see all terms cancels each other: | |
$$ | |
|g| \; \bbD F^T \cdot \Delta F | |
= | |
\bbD F^T \cdot \t{tr}[\beta \; \bbD^2 F] | |
- \l< F_1 \xx F_2, \bbD (F_1 \xx F_2) \r>^T | |
+ g \cdot (\del_i \beta_{i, j}) | |
= 0. | |
$$ | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment