Skip to content

Instantly share code, notes, and snippets.

@hi-ogawa
Last active June 26, 2021 09:59
Show Gist options
  • Save hi-ogawa/e40372524f96337f1f2066ad332b4d2b to your computer and use it in GitHub Desktop.
Save hi-ogawa/e40372524f96337f1f2066ad332b4d2b to your computer and use it in GitHub Desktop.
curvature
- [Curve](https://hi-ogawa.github.io/markdown-tex/?id=e40372524f96337f1f2066ad332b4d2b&filename=curvature-00-curve)
- [Surface](https://hi-ogawa.github.io/markdown-tex/?id=e40372524f96337f1f2066ad332b4d2b&filename=curvature-01-surface)
$$$
% From AsciiMath
\newcommand{\bb}[0]{\mathbf}
\newcommand{\bbb}[0]{\mathbb}
\newcommand{\cc}[0]{\mathcal}
\newcommand{\RR}[0]{\bbb{R}}
\newcommand{\CC}[0]{\bbb{C}}
\newcommand{\xx}[0]{\times}
\newcommand{\del}[0]{\partial}
% Quick begin/end
\newcommand{\Ba}[0]{\begin{aligned}}
\newcommand{\Ea}[0]{\end{aligned}}
\newcommand{\Bc}[0]{\begin{cases}}
\newcommand{\Ec}[0]{\end{cases}}
\newcommand{\Bm}[0]{\begin{matrix}}
\newcommand{\Em}[0]{\end{matrix}}
\newcommand{\Bmp}[0]{\begin{pmatrix}} % round bracket
\newcommand{\Emp}[0]{\end{pmatrix}}
\newcommand{\Bms}[0]{\begin{bmatrix}} % square bracket
\newcommand{\Ems}[0]{\end{bmatrix}}
\newcommand{\Bmc}[0]{\begin{Bmatrix}} % curley bracket
\newcommand{\Emc}[0]{\end{Bmatrix}}
% Others
\newcommand{\t}[0]{\text}
\newcommand{\l}[0]{\left}
\renewcommand{\r}[0]{\right}
\newcommand\ddfrac[2]{{\displaystyle\frac{\displaystyle #1}{\displaystyle #2}}}
$$$
## Curve
**Notations**
- $\gamma(t) : \RR \to \RR^2$ : twice differentiable curve,
- $\l< \bb{a}, \bb{b} \r> \equiv \bb{a}^T \bb{b}$,
- $\hat{\bb{a}} \equiv \dfrac{\bb{a}}{|\bb{a}|}$.
### Def. 1 (Osculating circle)
Define $\bb{v}(t \mid t_0) \in \RR^2$ s.t.
- $\l< \bb{v}(t \mid t_0), \gamma'(t_0) \r> = 0$,
- $|\gamma(t) - (\gamma(t_0) + \bb{v}(t \mid t_0))| = |\bb{v}(t \mid t_0)|$.
**N.B.**
- We ocasionally omit $t, t_0$ and $t_0$ and write e.g. $\bb{v} = \bb{v}(t) = \bb{v}(t \mid t_0)$.
- Geometrically speaking, it gives a circle s.t.
- center : $\gamma(t_0) + \bb{v}(t \mid t_0)$,
- tangent line: $\gamma(s) + \gamma'(t_0) (s - t_0)$ at $\gamma(t_0)$,
- passing points: $\gamma(t)$, $\gamma(t_0)$.
- Such circle can be still found even when $\gamma(t) \in \RR^3$.
- It's not well defined if
- $\gamma'(t_0) = \bb{0}$ or
- $\l< \gamma(t) - \gamma(t_0), \gamma'(t_0) \r> = 0$
### Prop. 2
$$ \l< \bb{v}(t_0 \mid t_0), \gamma''(t_0) \r> = |\gamma'(t_0)|^2$$
**N.B.**
- If $|\gamma'(t)|$ : constant, then we have
$0 = \del_t |\gamma'(t)| = \dfrac{\l< \gamma'(t), \gamma''(t) \r>}{|\gamma'(t)|}$.
Thus it gives:
$$
\bb{v}(t_0 \mid t_0)
= \dfrac{|\gamma'(t_0)|^2}{|\gamma''(t_0)|^2} \gamma''(t_0)
= \dfrac{|\gamma'(t_0)|^2}{|\gamma''(t_0)|} \hat{\gamma''}(t_0),
$$
and especially if $|\gamma'(t_0)| = 1$, then
$\bb{v} = \dfrac{1}{|\gamma''(t_0)|} \hat{\gamma''}(t_0)$.
***Proof***
From Tayler's theorem, we note that:
$$
\Ba
\l<\bb{v}(t), \gamma(t) - \gamma(t_0) \r>
&= \l<\bb{v}(t), \gamma'(t_0) \r> (t - t_0)
+ \l<\bb{v}(t), \gamma''(t_0) \r> \frac{1}{2} (t - t_0)^2
+ O((t - t_0)^3 \\
&=
\frac{1}{2}
(
\l<\bb{v}(t), \gamma''(t_0) \r>
+ O(t - t_0)
)
(t - t_0)^2
\Ea
$$
Thus, we have:
$$
\Ba
|\bb{v}(t)| &= |\gamma(t) - (\gamma(t_0) + \bb{v}(t))| \\
&\iff
|\gamma(t) - \gamma(t_0)|^2
= 2 \l<\bb{v}(t), \gamma(t) - \gamma(t_0) \r> \\
&\iff
\l| \frac{\gamma(t) - \gamma(t_0)}{t - t_0} \r|^2
= 2 \frac{ \l<\bb{v}(t), \gamma(t) - \gamma(t_0) \r>}{(t - t_0)^2}
= \l<\bb{v}(t), \gamma''(t_0) \r> + O(t - t_0).
\Ea
$$
### Prop. 3
Define $s : \RR \to \RR : t \mapsto s(t)$ by
$
s(t) \equiv \int^t du |\gamma'(u)|
$
and write its inverse as $t(s)$.
Also define $\eta(s) \equiv \gamma(t(s))$, then we have:
$$
\eta''(s)
= \frac{1}{|\gamma'|^2} (I - \hat{\gamma'} \hat{\gamma'}^T) \gamma''
= \frac{1}{|\gamma'|^4} (|\gamma'|^2 I - \gamma' \gamma'^T) \gamma''
= \frac{\!\!-1}{\;|\gamma'|^4} \gamma' \xx (\gamma' \xx \gamma'')
$$
**N.B.**
- We denote e.g. $\gamma' \equiv \gamma'(t(s))$ and $t' \equiv t'(s)$.
***Proof***
We note that $s'(t) = |\gamma'(s(t))|$ and
$t'(s) = \dfrac{1}{s'(t(s))} = \dfrac{1}{|\gamma'(t(s))|}$.
Then we see:
$$
t''(s)
= \del_s \frac{1}{|\gamma'|}
= - |\gamma'|^{-2} \frac{\gamma'^T}{|\gamma'|} \gamma'' t'
= - \frac{\l< \gamma', \gamma'' \r>}{|\gamma'|^4}.
$$
Thus:
$$
\Ba
\eta''(s)
= \gamma'' (t')^2 + \gamma' t''
= \gamma'' \frac{1}{|\gamma'|^2}
- \gamma' \frac{\l< \gamma', \gamma'' \r>}{|\gamma'|^4}
= \frac{1}{|\gamma'|^2}
(I - \frac{\gamma' \gamma'^T}{|\gamma'|^2}) \gamma''.
\Ea
$$
### Prop. 4
For $\gamma(x) \equiv \Bmp x \\ y(x) \Emp$ and $\eta$ from **Prop.3**, we have:
$$
\eta''
= \frac{y''}{(1 + (y')^2)^2}
\Bmp -y' \\ 1 \Emp.
$$
***Proof***
We have
$
\gamma' = \Bmp 1 \\ y' \Emp
$
and
$
\gamma'' = \Bmp 0 \\ y'' \Emp
$
, thus:
- $|\gamma'|^2 = 1 + (y')^2$,
- $
|\gamma'|^2 I - \gamma' \gamma'^T
=
\Bmp
1 + y'^2 - 1 & - y' \\
- y' & 1 + y'^2 - y'^2
\Emp
=
\Bmp
y'^2 & - y' \\
- y' & 1
\Emp
$.
Therefore:
$$
\Ba
\eta''
&= \frac{1}{|\gamma'|^4} (|\gamma'|^2 I - \gamma' \gamma'^T) \gamma''
= \frac{1}{1 + (y')^2}
\Bmp
y'^2 & - y' \\
- y' & 1
\Emp
\Bmp 0 \\ y'' \Emp \\
&= \frac{y''}{(1 + (y')^2)^2}
\Bmp -y' \\ 1 \Emp.
\Ea
$$
### Prop. 5
For $f(x, y(x)) = 0$ and $\gamma$, $\eta$ from **Prop. 4**, we have:
$$
\eta''
= \frac{f_{11} f_2^2 - 2 f_{12} f_1 f_2 + f_{22} f_1^2}{(f_1^2 + f_2^2)^2}
\Bmp f_1 \\ f_2 \Emp
= -
\frac{
\quad \l|\Bmp f_2 \\ - f_1 \Emp \r|_{\bb{D}^2f}^2
}{
\l|\Bmp f_1 \\ f_2 \Emp \r|^2
} \Bmp f_1 \\ f_2 \Emp
$$
**N.B.**
- Given $f : \RR^n \to \RR^{n - 1}$ with $\del_\bb{y} f(x, \bb{y})$ is invertible
where $x \in \RR$ and $\bb{y} \in \RR^{n - 1}$,
by implicit function theorem, there (locally) exists
$x \mapsto \bb{y}(x)$ s.t. $f(x, \bb{y}(x))$.
- We denote $f_1 \equiv \del_1 f(x, y)$ and $f_2 \equiv \del_2 f(x, y)$.
- We denote $|v|_A^2 \equiv \l< \bb{v}, A \bb{v} \r> = \bb{v}^T A \bb{v}$.
***Proof***
Since $f(x, y(x)) = 0$, we have:
- $
0 = \del_x f(x, y(x))
= \bb{D} f \cdot \Bmp 1 \\ y' \Emp
= f_1 + f_2 \, y'
$,
- $
0 = (\del_x)^2 f(x, y(x))
= \bb{D} f \cdot \Bmp 0 \\ y'' \Emp + \l| \Bmp 1 \\ y' \Emp \r|_{\bb{D}^2 f}^2
= f_2 \, y'' + \l| \Bmp 1 \\ y' \Emp \r|_{\bb{D}^2 f}^2
$.
Therefore:
- $f_2 \, y' = - f_1$,
- $
(f_2)^3 \, y''
= - (f_2)^2 \l| \Bmp 1 \\ y' \Emp \r|_{\bb{D}^2 f}^2
= - \l| \Bmp f_2 \\ f_2 y' \Emp \r|_{\bb{D}^2 f}^2
= - \l| \Bmp f_2 \\ - f_1 \Emp \r|_{\bb{D}^2 f}^2
$
and thus:
$$
\Ba
\eta''
&= \frac{y''}{(1 + (y')^2)^2}
\Bmp -y' \\ 1 \Emp
= \frac{(f_2)^3 y''}{((f_2)^2 + (f_2 \, y')^2)^2}
\Bmp - f_2 \, y' \\ f_2 \Emp
= -
\frac{
\l| \Bmp f_2 \\ - f_1 \Emp \r|_{\bb{D}^2 f}^2
}{((f_1)^2 + (f_2)^2)^2}
\Bmp f_1 \\ f_2 \Emp.
\Ea
$$
$$$
% From AsciiMath
\newcommand{\bb}[0]{\mathbf}
\newcommand{\bbb}[0]{\mathbb}
\newcommand{\cc}[0]{\mathcal}
\newcommand{\RR}[0]{\bbb{R}}
\newcommand{\CC}[0]{\bbb{C}}
\newcommand{\xx}[0]{\times}
\newcommand{\del}[0]{\partial}
% Quick begin/end
\newcommand{\Ba}[0]{\begin{aligned}}
\newcommand{\Ea}[0]{\end{aligned}}
\newcommand{\Bc}[0]{\begin{cases}}
\newcommand{\Ec}[0]{\end{cases}}
\newcommand{\Bm}[0]{\begin{matrix}}
\newcommand{\Em}[0]{\end{matrix}}
\newcommand{\Bmp}[0]{\begin{pmatrix}} % round bracket
\newcommand{\Emp}[0]{\end{pmatrix}}
% Others
\newcommand{\t}[0]{\text}
\newcommand{\l}[0]{\left}
\renewcommand{\r}[0]{\right}
\newcommand{\bbD}[0]{\mathbf{D}}
$$$
## Surface
**Goals**
- Prove classical results using usual Jacobian and matrix manipulation
(i.e. without differential form etc...)
**Notations**
For $F : \RR^2 \to \RR^3$, we denote:
- $F(u, v)$,
- $F_u = \del_u F$,
- $\bb{D} F = \Bmp F_u, F_v\Emp \in \RR^{3 \xx 2}$,
- $g = (\bb{D} F)^T \bb{D} F \in \RR^{2 \xx 2}$
For quadratic $Q \in \RR^{n \xx n}$, we denote:
- $Q[\bb{x}, \bb{y}] = \l< \bb{x}, Q \bb{y} \r> = \bb{x}^T Q \bb{y}$.
**Preliminary. 1**
- $
|g| =
\l|\Bm
|F_u|^2 & \l< F_u, F_v \r> \\
\l< F_u, F_u \r> & |F_v|^2
\Em\r|
=
|F_u|^2 |F_v|^2 - \l< F_u, F_v \r>^2
= |F_u \xx F_v|^2
$.
**Preliminary. 2**
In **Prop.3** of the [previous section](https://hi-ogawa.github.io/markdown-tex/?id=e40372524f96337f1f2066ad332b4d2b&filename=curvature-00-curve),
we found that
$$
\eta''(s)
= \frac{1}{|\gamma'|^4} (|\gamma'|^2 I - \gamma' \gamma'^T) \gamma''
= \frac{\!\!-1}{\;|\gamma'|^4} \gamma' \xx (\gamma' \xx \gamma'').
$$
where
- $\gamma : \RR \to \RR^2$ : curve,
- $\eta(s) = \gamma(t(s))$ : arc-length parametrized curve.
Here we consider the surface defined by $F : \RR^2 \to \RR^3$ and
the curve $\gamma(t) = F(\mu(t)) : \RR \to \RR^2 \to \RR^3$ within the surface.
Then we deine:
- $N \equiv \widehat{F_u \xx Fv}$ : (right-handed) normal
- $k \equiv \l< N, \eta'' \r>$ : normal curvature
where arc-length parametrization $\eta(s)$ is naturally defined for
3-dimentional case $\gamma : \RR \to \RR^3$ as well.
But, note that it's not necessarily $\eta'' \parallel N$
even though it's always $\eta'' \perp \gamma'$ and $N \perp \gamma'$.
### Prop.1
$$
k = \frac{ A[\mu', \mu'] }{ g[\mu', \mu'] }
$$
where $
A[\bb{x}, \bb{y}]
= \l< N, \bb{D}^2 F[\bb{x}, \bb{y}] \r>
= \l< N, \bb{D}^2 F \r> [\bb{x}, \bb{y}]
$.
**N.B.**
- More explicitly:
$$
\Ba
A
&= \l< N, \bb{D}^2 F \r>
=
\Bmp
\l< N, F_{uu} \r> & \l< N, F_{uv} \r> \\
\l< N, F_{uv} \r> & \l< N, F_{vv} \r>
\Emp
=
\frac{1}{|F_u \xx F_v|}
\Bmp
\l< F_u \xx F_v, F_{uu} \r> & \l< F_u \xx F_v, F_{uv} \r> \\
\l< F_u \xx F_v, F_{uv} \r> & \l< F_u \xx F_v, F_{vv} \r>
\Emp \\\\
&=
\frac{1}{|g|^{1/2}}
\Bmp
\l< F_u \xx F_v, F_{uu} \r> & \l< F_u \xx F_v, F_{uv} \r> \\
\l< F_u \xx F_v, F_{uv} \r> & \l< F_u \xx F_v, F_{vv} \r>
\Emp.
\Ea
$$
***Proof***
First we note:
- $\gamma' = \bb{D}F \cdot \mu'$,
- $\gamma'' = \bb{D}^2 F [\mu', \mu'] + \bb{D}F \cdot \mu''$,
- $\l< N, \bb{D} F \r> = 0$,
- $\l< N, \gamma' \r> = 0$,
- $|\gamma'|^2 = \l< \bb{D}F \mu', \bb{D}F \mu' \r> = g[\mu', \mu]$,
- $\l< N, \gamma'' \r> = \l< N, \bb{D}^2 F [\mu', \mu'] \r>$.
Thus,
$$
\l< N, \eta'' \r>
=
\frac{1}{|\gamma'|^2}
\l< N, \gamma'' \r>
-
\frac{\gamma'^T \gamma''}{|\gamma'|^4}
\l< N , \gamma' \r>
=
\frac{\l< N, \bb{D}^2 F [\mu', \mu'] \r>}{g[\mu', \mu]}.
$$
### Prop. 2
Writing $\mu' = g^{-\frac{1}{2}} \bb{x}$ and
$B \equiv g^{-\frac{1}{2}} A g^{-\frac{1}{2}}$ , we have:
$$
k = \frac{ A[\mu', \mu'] }{ g[\mu', \mu'] }
= \frac{ g^{-\frac{1}{2}} A g^{-\frac{1}{2}}[\bb{x}, \bb{x}] } { |\bb{x}|^2 }
= B[\hat{\bb{x}}, \hat{\bb{x}}]
$$
Thus, denoting its diagonalization by $B = P \Bmp k_1 & 0 \\ 0 & k_2 \Emp P^{-1}$
with $P = \Bmp \bb{x}_1, \bb{x}_2 \Emp$ and $k_1 \ge k_2$, we have:
- $\t{max}(k) = k_1$ when $\mu' = \mu'_1 = g^{- \frac{1}{2}} \bb{x}_1$,
- $\t{min}(k) = k_2$ when $\mu' = \mu'_2 = g^{- \frac{1}{2}} \bb{x}_2$,
- $k = \cos^2(\phi) k_1 + \sin^2(\phi) k_2$
when $\hat{\bb{x}} = \cos(\phi) \bb{x}_1 + \sin(\phi) \bb{x}_2$
(aka. Euler's theorem)
- $\bb{x}_1 \perp \bb{x}_2$,
- N.B. maximality, minimality and orthogonality comes from usual spectral theorem.
Also, for $\gamma'_i = \bb{D} F \mu'_i = \bb{D} F g^{- \frac{1}{2}}\bb{x}_i$ where ($i = 1, 2$),
we have $\gamma'_1 \perp \gamma'_2$ since
$$
\l< \gamma'_1, \gamma'_2 \r>
= \bb{x}_1^T g^{- \frac{1}{2}} g g^{- \frac{1}{2}} \bb{x}_2
= \l< \bb{x}_1, \bb{x}_2 \r> = 0.
$$
### Def. 3
- Gaussian curvature : $k_G \equiv k_1 k_2$,
- Mean curvature : $k_M \equiv \dfrac{k_1 + k_2}{2}$.
### Prop. 4
Noting that $|F_u \xx F_v| = |g|^{1/2}$,
$$
\Ba
2 k_M
&= \t{tr}[B] = \t{tr}[g^{-1} \l< \widehat{F_u \xx F_v}, \bb{D}^2 F \r>] \\
&=
\frac{1}{|g|^{3/2}}
\t{tr}[\alpha_g^T \l< F_u \xx F_v, \bb{D}^2 F\r> ] \\
&=
\frac{1}{|g|^{3/2}}
\bigg(
|F_v|^2 \l< F_u \xx F_v, F_{uu} \r>
+ |F_u|^2 \l< F_u \xx F_v, F_{vv} \r>
- 2 \l< F_u, F_v \r> \l< F_u \xx F_v, F_{uv} \r>
\bigg).
\Ea
$$
where we used:
- $
\alpha_g^T
= \Bmp
|F_v|^2 & - \l< F_u, F_v \r> \\
- \l< F_u, F_v \r> & |F_u|^2
\Emp.
$
### Prop. 5
$$
\Ba
k_G
&= \t{det}[B]
= \frac{\t{det}[\l< \widehat{F_u \xx F_v}, \bb{D}^2 F \r>]}{\t{det}[g]}
= \frac{1}{|g|^2} \t{det}[\l< F_u \xx F_v, \bb{D}^2 F \r>] \\
&=
\frac{1}{|g|^2}
\bigg(
\l< F_u \xx F_v, F_{uu} \r> \l< F_u \xx F_v, F_{vv} \r>
- \l< F_u \xx F_v, F_{uv} \r>^2
\bigg).
\Ea
$$
### Prop. 6
As a special case of $F(u, v) = (u, v, f(u, v))$ (aka. scalar surface), we have:
- $F_u = \Bmp 1 \\ 0 \\ f_u \Emp$, $F_v = \Bmp 0 \\ 1 \\ f_v \Emp$,
- $F_u \xx F_v = \Bmp - f_u \\ - f_v \\ 1 \Emp $,
- $g = |F_u \xx F_v|^2 = 1 + f_u^2 + f_v^2$,
- $\l< F_u \xx F_v, \bb{D}^2 F \r> = \bb{D}^2 f$.
Thus,
$$
\Ba
2 k_M
&=
\dfrac{1}{(1 + f_u^2 + f_v^2)^{3/2}}
\bigg(
(1 + f_v^2) f_{uu}
+ (1 + f_u^2) f_{vv}
- 2 f_u f_v f_{uv}
\bigg), \\
k_G
&=
\dfrac{1}{(1 + f_u^2 + f_v^2)^2}
( f_{uu} f_{vv} - f_{uv}^2 ).
\Ea
$$
### Def. 7 (Shape operator)
Define $S$ as unique $S \in \RR^{2 \xx 2}$ s.t.
$$
\bbD F \cdot S = \bbD N \in \RR^{3 \xx 2}.
$$
**N.B.**
Uniqueness holds since:
$$
\Ba
&\bbD F \cdot S = \bbD N \\
&\implies
\bbD F^T \cdot \bbD F \cdot S = \bbD F^T \cdot \bbD N \\
&\iff
S = (\bbD F^T \cdot \bbD F)^{-1} \cdot \bbD F^T \cdot \bbD N
= g^{-1} \cdot \bbD F^T \cdot \bbD N
\Ea
$$
and its converse holds since $\bbD N \in \t{span}(\bbD F)$.
### Prop. 8
$$
S = - g^{-1} \l< N, \bbD^2 F \r>
$$
Thus, especially
- $\t{tr}[S] = - \t{tr}[g^{-1} \l< N, \bbD^2 F \r>] = - \t{tr}[B] = - (k_1 + k_2)$,
- $\det[S] = \det[g^{-1} \l< N, \bbD^2 F \r>] = \det[B] = k_1 k_2$.
So, this already captures information about the curvature
without going through $B = g^{-1/2} \l< N, \bbD^2 F \r> g^{-1/2}$.
***Proof***
It safices to show $\bbD F^T \cdot \bbD N = - \l< N, \bbD^2 F\r>$.
From $\bbD F^T \cdot N = 0$, we see that:
$$
\Ba
0 &= \bbD (\bbD F^T \cdot N)
= \bbD^2 F^T \cdot N + \bbD F^T \cdot \bbD N \\
&= \l< N, \bbD^2 F \r> + \bbD F^T \cdot \bbD N.
\Ea
$$
### Def. 9 (Laplace-Beltrami operator)
For $f : \RR^n \to \RR$, define $\Delta f : \RR^n \to \RR$ by:
$$
\Delta f
\equiv
\frac{1}{|g|^{1/2}} \del_i (|g|^{1/2} g^{-1}_{i, j} \del_j f)
$$
**N.B.**
- We can separate 1st/2nd derivatives as:
$$
\Ba
\frac{1}{|g|^{1/2}} \del_i (|g|^{1/2} g^{-1}_{i, j} \del_j f)
&=
g^{-1}_{i, j} \del_{i, j} f
+
\frac{1}{|g|^{1/2}}
\del_j f \;
\del_i (|g|^{1/2} g^{-1}_{i, j} ) \\
&=
\t{tr}[g^{-1} \bbD^2 f]
+
\frac{1}{|g|^{1/2}}
\bbD f
\cdot
\Bmp
\del_i |g|^{1/2} g^{-1}_{i, 1} \\
\del_i |g|^{1/2} g^{-1}_{i, 2} \\
\vdots
\Emp.
\Ea
$$
- For vector-valued function (e.g. $F : \RR^2 \to \RR^3$), we define
$\Delta F$ in a pointwise manner (i.e. $\Delta$ for each component).
### Prop. 10
$$
\Delta F = 2 k_M N
$$
**N.B.**
- Here we use a different notation for derivative by
$F_1 \equiv = F_u = \del_u F$ and $F_2 \equiv F_v = \del_v F$ since
I found that the subscripts $u$ and $v$ are sometimes not easy to discern.
***Proof***
It safices to show:
- (1) $\bbD F^T \cdot \Delta F = \bb{0} \in \RR^{2}$, i.e. $\Delta F$ doesn't have tangential component, and
- (2) $N^T \cdot \Delta F = 2 k_M \in \RR$.
First, we show (2).
Since $N^T \cdot \bbD F = 0$, the term with 1st derivative vanishes and we have:
$$
\l< N, \Delta F \r>
= \l< N, \t{tr}[g^{-1} \bbD^2 F] \r>
= \t{tr}[g^{-1} \l< N, \bbD^2 f \r>]
= 2 k_M.
$$
Next, we show (1).
Looking at 1st/2nd derivative terms:
$$
\bbD F^T \cdot \Delta F
=
\bbD F^T \cdot \t{tr}[g^{-1} \bbD^2 F]
+
\bbD F^T \cdot \bbD F \cdot
\frac{1}{|g|^{1/2}} \del_i (|g|^{1/2} g^{-1}_{i, j}) \\
=
\bbD F^T \cdot \t{tr}[g^{-1} \bbD^2 F]
+
g \cdot
\frac{1}{|g|^{1/2}} \del_i (|g|^{1/2} g^{-1}_{i, j}).
$$
Here we denote $\beta \in \RR^{2 \xx 2}$ by $g^{-1} = \dfrac{1}{|g|} \beta$, i.e.
$$
\beta =
\Bmp
|F_2|^2 & - \l< F_1, F_2 \r> \\
- \l< F_1, F_2 \r> & |F_1|^2 \\
\Emp.
$$
Also remember that $|g| = |F_1 \xx F_2|^2$.
Now, expanding the last term:
$$
\Ba
\del_i (|g|^{1/2} g^{-1}_{i, j})
&= \del_i ( |g|^{-1/2} \beta_{i, j})
=
(\del_i |g|^{-1/2}) \; \beta_{i, j}
+
|g|^{-1/2} \del_i \beta_{i, j} \\
&=
\beta \cdot (\bbD |g|^{-1/2})^T
+
|g|^{-1/2} \del_i \beta_{i, j},
\Ea
$$
$$
\bbD |g|^{-1/2}
= - \frac{1}{2} |g|^{-3/2} \bbD |g|
= - |g|^{-3/2} \l< F_1 \xx F_2, \bbD (F_1 \xx F_2) \r>,
$$
$$
\del_i \beta_{i, j}
=
\Bmp
\del_1 |F_2|^2 - \del_2 \l< F_1, F_2 \r> \\
- \del_1 \l< F_1, F_2 \r> + \del_2 |F_1|^2
\Emp
=
\Bmp
\l< F_2, F_{12} \r> - \l< F_1, F_{22} \r> \\
\l< F_1, F_{12} \r> - \l< F_{11}, F_2 \r>
\Emp,
$$
so, we found that (note that $\; g \beta = |g| I \;$):
$$
\Ba
g \cdot \frac{1}{|g|^{1/2}} \del_i (|g|^{1/2} g^{-1}_{i, j})
&=
- \frac{1}{|g|^2}
g \cdot \beta \cdot \l< F_1 \xx F_2, \bbD (F_1 \xx F_2) \r>^T
+ \frac{1}{|g|}
g \cdot (\del_i \beta_{i, j}) \\
&=
\frac{1}{|g|}
\l(
- \l< F_1 \xx F_2, \bbD (F_1 \xx F_2) \r>^T
+ g \cdot (\del_i \beta_{i, j})
\r).
\Ea
$$
Inserting this into the original formula, we obtain:
$$
\Ba
\bbD F^T \cdot \Delta F
&=
\bbD F^T \cdot \t{tr}[g^{-1} \bbD^2 F]
+
g \cdot
\frac{1}{|g|^{1/2}} \del_i (|g|^{1/2} g^{-1}_{i, j}) \\
&=
\frac{1}{|g|}
\l(
\bbD F^T \cdot \t{tr}[\beta \; \bbD^2 F]
- \l< F_1 \xx F_2, \bbD (F_1 \xx F_2) \r>^T
+ g \cdot (\del_i \beta_{i, j})
\r)
\Ea
$$
Finally, we're going to expand all terms:
$$
\Ba
\bbD F^T \cdot \t{tr}[\beta \; \bbD^2 F]
&=
\t{tr} \l[
\beta \cdot
\Bmp
\l< F_i, F_{11} \r> & \l< F_i, F_{12} \r> \\
\l< F_i, F_{12} \r> & \l< F_i, F_{22} \r>
\Emp
\r]_i \\
&=
\Bmp
|F_2|^2 \l< F_1, F_{11} \r>
+ |F_1|^2 \l< F_1, F_{22} \r>
- 2 \l< F_1, F_2 \r> \l< F_1, F_{12} \r> \\
|F_2|^2 \l< F_2, F_{11} \r>
+ |F_1|^2 \l< F_2, F_{22} \r>
- 2 \l< F_1, F_2 \r> \l< F_2, F_{12} \r>
\Emp, \\\\
\l< F_1 \xx F_2, \bbD (F_1 \xx F_2) \r>^T
&=
\Bmp
\l< F_1 \xx F_2, \del_1 (F_1 \xx F_2) \r> \\
\l< F_1 \xx F_2, \del_2 (F_1 \xx F_2) \r>
\Emp \\
&=
\Bmp
\l< F_1 \xx F_2, F_{11} \xx F_2 + F_1 \xx F_{12} \r> \\
\l< F_1 \xx F_2, F_1 \xx F_{22} + F_{12} \xx F_2 \r>
\Emp \\
&=
\Bmp
\l< F_1, F_{11} \r> |F_2|^2 - \l< F_1, F_2 \r> \l< F_{11}, F_2 \r> +
\l< F_2, F_{12} \r> |F_1|^2 - \l< F_1, F_2 \r> \l< F_1, F_{12} \r> \\
\l< F_2, F_{22} \r> |F_1|^2 - \l< F_1, F_2 \r> \l< F_1, F_{22} \r> +
\l< F_1, F_{12} \r> |F_2|^2 - \l< F_1, F_2 \r> \l< F_2, F_{12} \r>
\Emp, \\\\
g \cdot \del_i \beta_{i, j}
&=
g \cdot
\Bmp
\l< F_2, F_{12} \r> - \l< F_1, F_{22} \r> \\
\l< F_1, F_{12} \r> - \l< F_{11}, F_2 \r>
\Emp \\
&=
\Bmp
|F_1|^2 (\l< F_2, F_{12} \r> - \l< F_1, F_{22} \r>)
+ \l< F_1, F_2 \r> ( \l< F_1, F_{12} \r> - \l< F_{11}, F_2 \r> ) \\
\l< F_1, F_2 \r> (\l< F_2, F_{12} \r> - \l< F_1, F_{22} \r>)
+ |F_2|^2 (\l< F_1, F_{12} \r> - \l< F_{11}, F_2 \r>)
\Emp,
\Ea
$$
and we see all terms cancels each other:
$$
|g| \; \bbD F^T \cdot \Delta F
=
\bbD F^T \cdot \t{tr}[\beta \; \bbD^2 F]
- \l< F_1 \xx F_2, \bbD (F_1 \xx F_2) \r>^T
+ g \cdot (\del_i \beta_{i, j})
= 0.
$$
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment