-
-
Save icyee/1fbdc60037daafc643f1338f36eefe30 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(ggplot2) | |
library(glmnet) | |
library(reshape2) | |
# 读入数据 | |
data <- read.csv('d:/ex2data2.txt',F) | |
# 散点图 | |
ggplot()+ | |
geom_point(data=data,aes(V1,V2,colour=factor(V3), | |
shape=factor(V3)),size=3) | |
# 建立六阶多项式自变量 | |
attach(data) | |
degree = 6 | |
X = matrix(rep(1,length(V1)),ncol=1) | |
for (i in 1:degree) { | |
for (j in 0:i) { | |
X <-cbind(X, (V1^(i-j))*V2^j) | |
} | |
} | |
x<- X[,-1] | |
Y <- data$V3 | |
# 用glmnet包建模 | |
model <- cv.glmnet(x,Y,family="binomial",type.measure="deviance") | |
# 绘制CV曲线图,选择最佳lambda值 | |
plot(model) | |
model$lambda.1se | |
# 提取最终模型 | |
model.final <- model$glmnet.fit | |
# 取得简洁模型的参数系数 | |
model.coef <- coef(model$glmnet.fit, s = model$lambda.1se) | |
# 取得原始模型的参数系数 | |
all.coef <- coef(model$glmnet.fit, s = min(model.final$lambda)) | |
# 可以用predict进行预测 | |
# pre <-predict(model.final,newx=x,s=model$lambda.1se,type='class') | |
# table(Y,pre) | |
# 下面的工作全部是为了绘制决策边界 | |
u <- seq(-1,1.2, len=200) | |
v <- seq(-1,1.2, len=200) | |
z28 <-z9 <- matrix(0, length(u), length(v)) | |
mapFeature <- function(u,v, degree=6) { | |
out <- sapply(0:degree,function(i) | |
sapply(0:i, function(j) | |
u^(i-j) * v^j | |
) | |
) | |
out <- unlist(out) | |
return(out) | |
} | |
for (i in 1:length(u)) { | |
for (j in 1:length(v)) { | |
features <- mapFeature(u[i],v[j]) | |
z9[i,j] <- as.numeric(features %*% model.coef) | |
z28[i,j] <- as.numeric(features %*%all.coef) | |
} | |
} | |
rownames(z9) <- rownames(z28) <- as.character(u) | |
colnames(z9) <- colnames(z28) <- as.character(v) | |
z9.melted <- melt(z9) | |
z28.melted <- melt(z28) | |
z9.melted <- data.frame(z9.melted, lambda=9) | |
z28.melted <- data.frame(z28.melted, lambda=28) | |
zz <- rbind(z9.melted, z28.melted) | |
zz$lambda <- factor(zz$lambda) | |
colnames(zz) <- c("u", "v", "z", "lambda") | |
p <- ggplot()+ | |
geom_point(data=data,aes(V1,V2,colour=factor(V3),shape=factor(V3)),size=3) + | |
geom_contour(data=zz, aes(u, v, z = z, | |
group=lambda, colour=lambda),bins=1,size=1) | |
p |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
您好,我是一个 r 的初学者,最近在学习机器学习的方法。在 https://www.r-bloggers.com/lang/chinese/1017 上看到您的博文,很受启发,原理方面介绍的很清楚,但是在用 r 实现我的数据的lasso 算法的时候,交叉验证这一步总是不知道怎么实现,如若可以,可否麻烦您指点一二,非常感谢!