-
-
Save ilblackdragon/c92066d9d38b236a21d5a7b729a10f12 to your computer and use it in GitHub Desktop.
import logging | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow.contrib import layers | |
GO_TOKEN = 0 | |
END_TOKEN = 1 | |
UNK_TOKEN = 2 | |
def seq2seq(mode, features, labels, params): | |
vocab_size = params['vocab_size'] | |
embed_dim = params['embed_dim'] | |
num_units = params['num_units'] | |
input_max_length = params['input_max_length'] | |
output_max_length = params['output_max_length'] | |
inp = features['input'] | |
output = features['output'] | |
batch_size = tf.shape(inp)[0] | |
start_tokens = tf.zeros([batch_size], dtype=tf.int64) | |
train_output = tf.concat([tf.expand_dims(start_tokens, 1), output], 1) | |
input_lengths = tf.reduce_sum(tf.to_int32(tf.not_equal(inp, 1)), 1) | |
output_lengths = tf.reduce_sum(tf.to_int32(tf.not_equal(train_output, 1)), 1) | |
input_embed = layers.embed_sequence( | |
inp, vocab_size=vocab_size, embed_dim=embed_dim, scope='embed') | |
output_embed = layers.embed_sequence( | |
train_output, vocab_size=vocab_size, embed_dim=embed_dim, scope='embed', reuse=True) | |
with tf.variable_scope('embed', reuse=True): | |
embeddings = tf.get_variable('embeddings') | |
cell = tf.contrib.rnn.GRUCell(num_units=num_units) | |
encoder_outputs, encoder_final_state = tf.nn.dynamic_rnn(cell, input_embed, dtype=tf.float32) | |
train_helper = tf.contrib.seq2seq.TrainingHelper(output_embed, output_lengths) | |
# train_helper = tf.contrib.seq2seq.ScheduledEmbeddingTrainingHelper( | |
# output_embed, output_lengths, embeddings, 0.3 | |
# ) | |
pred_helper = tf.contrib.seq2seq.GreedyEmbeddingHelper( | |
embeddings, start_tokens=tf.to_int32(start_tokens), end_token=1) | |
def decode(helper, scope, reuse=None): | |
with tf.variable_scope(scope, reuse=reuse): | |
attention_mechanism = tf.contrib.seq2seq.BahdanauAttention( | |
num_units=num_units, memory=encoder_outputs, | |
memory_sequence_length=input_lengths) | |
cell = tf.contrib.rnn.GRUCell(num_units=num_units) | |
attn_cell = tf.contrib.seq2seq.AttentionWrapper( | |
cell, attention_mechanism, attention_layer_size=num_units / 2) | |
out_cell = tf.contrib.rnn.OutputProjectionWrapper( | |
attn_cell, vocab_size, reuse=reuse | |
) | |
decoder = tf.contrib.seq2seq.BasicDecoder( | |
cell=out_cell, helper=helper, | |
initial_state=out_cell.zero_state( | |
dtype=tf.float32, batch_size=batch_size)) | |
#initial_state=encoder_final_state) | |
outputs = tf.contrib.seq2seq.dynamic_decode( | |
decoder=decoder, output_time_major=False, | |
impute_finished=True, maximum_iterations=output_max_length | |
) | |
return outputs[0] | |
train_outputs = decode(train_helper, 'decode') | |
pred_outputs = decode(pred_helper, 'decode', reuse=True) | |
tf.identity(train_outputs.sample_id[0], name='train_pred') | |
weights = tf.to_float(tf.not_equal(train_output[:, :-1], 1)) | |
loss = tf.contrib.seq2seq.sequence_loss( | |
train_outputs.rnn_output, output, weights=weights) | |
train_op = layers.optimize_loss( | |
loss, tf.train.get_global_step(), | |
optimizer=params.get('optimizer', 'Adam'), | |
learning_rate=params.get('learning_rate', 0.001), | |
summaries=['loss', 'learning_rate']) | |
tf.identity(pred_outputs.sample_id[0], name='predictions') | |
return tf.estimator.EstimatorSpec( | |
mode=mode, | |
predictions=pred_outputs.sample_id, | |
loss=loss, | |
train_op=train_op | |
) | |
def tokenize_and_map(line, vocab): | |
return [vocab.get(token, UNK_TOKEN) for token in line.split(' ')] | |
def make_input_fn( | |
batch_size, input_filename, output_filename, vocab, | |
input_max_length, output_max_length, | |
input_process=tokenize_and_map, output_process=tokenize_and_map): | |
def input_fn(): | |
inp = tf.placeholder(tf.int64, shape=[None, None], name='input') | |
output = tf.placeholder(tf.int64, shape=[None, None], name='output') | |
tf.identity(inp[0], 'input_0') | |
tf.identity(output[0], 'output_0') | |
return { | |
'input': inp, | |
'output': output, | |
}, None | |
def sampler(): | |
while True: | |
with open(input_filename) as finput: | |
with open(output_filename) as foutput: | |
for in_line in finput: | |
out_line = foutput.readline() | |
yield { | |
'input': input_process(in_line, vocab)[:input_max_length - 1] + [END_TOKEN], | |
'output': output_process(out_line, vocab)[:output_max_length - 1] + [END_TOKEN] | |
} | |
sample_me = sampler() | |
def feed_fn(): | |
inputs, outputs = [], [] | |
input_length, output_length = 0, 0 | |
for i in range(batch_size): | |
rec = sample_me.next() | |
inputs.append(rec['input']) | |
outputs.append(rec['output']) | |
input_length = max(input_length, len(inputs[-1])) | |
output_length = max(output_length, len(outputs[-1])) | |
# Pad me right with </S> token. | |
for i in range(batch_size): | |
inputs[i] += [END_TOKEN] * (input_length - len(inputs[i])) | |
outputs[i] += [END_TOKEN] * (output_length - len(outputs[i])) | |
return { | |
'input:0': inputs, | |
'output:0': outputs | |
} | |
return input_fn, feed_fn | |
def load_vocab(filename): | |
vocab = {} | |
with open(filename) as f: | |
for idx, line in enumerate(f): | |
vocab[line.strip()] = idx | |
return vocab | |
def get_rev_vocab(vocab): | |
return {idx: key for key, idx in vocab.iteritems()} | |
def get_formatter(keys, vocab): | |
rev_vocab = get_rev_vocab(vocab) | |
def to_str(sequence): | |
tokens = [ | |
rev_vocab.get(x, "<UNK>") for x in sequence] | |
return ' '.join(tokens) | |
def format(values): | |
res = [] | |
for key in keys: | |
res.append("%s = %s" % (key, to_str(values[key]))) | |
return '\n'.join(res) | |
return format | |
def train_seq2seq( | |
input_filename, output_filename, vocab_filename, | |
model_dir): | |
vocab = load_vocab(vocab_filename) | |
params = { | |
'vocab_size': len(vocab), | |
'batch_size': 32, | |
'input_max_length': 30, | |
'output_max_length': 30, | |
'embed_dim': 100, | |
'num_units': 256 | |
} | |
est = tf.estimator.Estimator( | |
model_fn=seq2seq, | |
model_dir=model_dir, params=params) | |
input_fn, feed_fn = make_input_fn( | |
params['batch_size'], | |
input_filename, | |
output_filename, | |
vocab, params['input_max_length'], params['output_max_length']) | |
# Make hooks to print examples of inputs/predictions. | |
print_inputs = tf.train.LoggingTensorHook( | |
['input_0', 'output_0'], every_n_iter=100, | |
formatter=get_formatter(['input_0', 'output_0'], vocab)) | |
print_predictions = tf.train.LoggingTensorHook( | |
['predictions', 'train_pred'], every_n_iter=100, | |
formatter=get_formatter(['predictions', 'train_pred'], vocab)) | |
est.train( | |
input_fn=input_fn, | |
hooks=[tf.train.FeedFnHook(feed_fn), print_inputs, print_predictions], | |
steps=10000) | |
def main(): | |
tf.logging._logger.setLevel(logging.INFO) | |
train_seq2seq('input', 'output', 'vocab', 'model/seq2seq') |
My data is private, but I'll make some test data for an example.
Data generator and full binary here: https://github.com/ilblackdragon/tf_examples/blob/master/seq2seq/
As you use BahdanauAttention in your code, why didn't set output_attention (AttentionWrapper) to False?
Following this example, wouldn't the first END_TOKEN target symbol be given zero weight?
@robmsylvester I think this is correct, as it does not matter to the model whether feeding the END_TOKEN to the decoder gives the correct next word or not.
I want to load a pre-trained embeddings. Should i change the layers.embed_sequence
to tf.nn.embedding_lookup
?
Can someone tell me what is attention_layer_size
and why is it num_units/2
?
Can anyone guide me about how to use BahdanauAttention. when i use it like "tf.contrib.seq2seq.BahdanauAttention" or "seq2seq.BahdanauAttention" in either case i get an error"AttributeError: module 'tensorflow.contrib.seq2seq' has no attribute 'BahdanauAttention'. I'm using tensorflow 1.0.1. I'm new to deep learning. Any suggestion regarding will be appreciated.
Thank you.
can you share the 'input', 'output', 'vocab', 'model/seq2seq' , if so i can run the example?