Last active
May 22, 2022 21:42
-
-
Save ilblackdragon/c92066d9d38b236a21d5a7b729a10f12 to your computer and use it in GitHub Desktop.
Example of Seq2Seq with Attention using all the latest APIs
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import logging | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow.contrib import layers | |
GO_TOKEN = 0 | |
END_TOKEN = 1 | |
UNK_TOKEN = 2 | |
def seq2seq(mode, features, labels, params): | |
vocab_size = params['vocab_size'] | |
embed_dim = params['embed_dim'] | |
num_units = params['num_units'] | |
input_max_length = params['input_max_length'] | |
output_max_length = params['output_max_length'] | |
inp = features['input'] | |
output = features['output'] | |
batch_size = tf.shape(inp)[0] | |
start_tokens = tf.zeros([batch_size], dtype=tf.int64) | |
train_output = tf.concat([tf.expand_dims(start_tokens, 1), output], 1) | |
input_lengths = tf.reduce_sum(tf.to_int32(tf.not_equal(inp, 1)), 1) | |
output_lengths = tf.reduce_sum(tf.to_int32(tf.not_equal(train_output, 1)), 1) | |
input_embed = layers.embed_sequence( | |
inp, vocab_size=vocab_size, embed_dim=embed_dim, scope='embed') | |
output_embed = layers.embed_sequence( | |
train_output, vocab_size=vocab_size, embed_dim=embed_dim, scope='embed', reuse=True) | |
with tf.variable_scope('embed', reuse=True): | |
embeddings = tf.get_variable('embeddings') | |
cell = tf.contrib.rnn.GRUCell(num_units=num_units) | |
encoder_outputs, encoder_final_state = tf.nn.dynamic_rnn(cell, input_embed, dtype=tf.float32) | |
train_helper = tf.contrib.seq2seq.TrainingHelper(output_embed, output_lengths) | |
# train_helper = tf.contrib.seq2seq.ScheduledEmbeddingTrainingHelper( | |
# output_embed, output_lengths, embeddings, 0.3 | |
# ) | |
pred_helper = tf.contrib.seq2seq.GreedyEmbeddingHelper( | |
embeddings, start_tokens=tf.to_int32(start_tokens), end_token=1) | |
def decode(helper, scope, reuse=None): | |
with tf.variable_scope(scope, reuse=reuse): | |
attention_mechanism = tf.contrib.seq2seq.BahdanauAttention( | |
num_units=num_units, memory=encoder_outputs, | |
memory_sequence_length=input_lengths) | |
cell = tf.contrib.rnn.GRUCell(num_units=num_units) | |
attn_cell = tf.contrib.seq2seq.AttentionWrapper( | |
cell, attention_mechanism, attention_layer_size=num_units / 2) | |
out_cell = tf.contrib.rnn.OutputProjectionWrapper( | |
attn_cell, vocab_size, reuse=reuse | |
) | |
decoder = tf.contrib.seq2seq.BasicDecoder( | |
cell=out_cell, helper=helper, | |
initial_state=out_cell.zero_state( | |
dtype=tf.float32, batch_size=batch_size)) | |
#initial_state=encoder_final_state) | |
outputs = tf.contrib.seq2seq.dynamic_decode( | |
decoder=decoder, output_time_major=False, | |
impute_finished=True, maximum_iterations=output_max_length | |
) | |
return outputs[0] | |
train_outputs = decode(train_helper, 'decode') | |
pred_outputs = decode(pred_helper, 'decode', reuse=True) | |
tf.identity(train_outputs.sample_id[0], name='train_pred') | |
weights = tf.to_float(tf.not_equal(train_output[:, :-1], 1)) | |
loss = tf.contrib.seq2seq.sequence_loss( | |
train_outputs.rnn_output, output, weights=weights) | |
train_op = layers.optimize_loss( | |
loss, tf.train.get_global_step(), | |
optimizer=params.get('optimizer', 'Adam'), | |
learning_rate=params.get('learning_rate', 0.001), | |
summaries=['loss', 'learning_rate']) | |
tf.identity(pred_outputs.sample_id[0], name='predictions') | |
return tf.estimator.EstimatorSpec( | |
mode=mode, | |
predictions=pred_outputs.sample_id, | |
loss=loss, | |
train_op=train_op | |
) | |
def tokenize_and_map(line, vocab): | |
return [vocab.get(token, UNK_TOKEN) for token in line.split(' ')] | |
def make_input_fn( | |
batch_size, input_filename, output_filename, vocab, | |
input_max_length, output_max_length, | |
input_process=tokenize_and_map, output_process=tokenize_and_map): | |
def input_fn(): | |
inp = tf.placeholder(tf.int64, shape=[None, None], name='input') | |
output = tf.placeholder(tf.int64, shape=[None, None], name='output') | |
tf.identity(inp[0], 'input_0') | |
tf.identity(output[0], 'output_0') | |
return { | |
'input': inp, | |
'output': output, | |
}, None | |
def sampler(): | |
while True: | |
with open(input_filename) as finput: | |
with open(output_filename) as foutput: | |
for in_line in finput: | |
out_line = foutput.readline() | |
yield { | |
'input': input_process(in_line, vocab)[:input_max_length - 1] + [END_TOKEN], | |
'output': output_process(out_line, vocab)[:output_max_length - 1] + [END_TOKEN] | |
} | |
sample_me = sampler() | |
def feed_fn(): | |
inputs, outputs = [], [] | |
input_length, output_length = 0, 0 | |
for i in range(batch_size): | |
rec = sample_me.next() | |
inputs.append(rec['input']) | |
outputs.append(rec['output']) | |
input_length = max(input_length, len(inputs[-1])) | |
output_length = max(output_length, len(outputs[-1])) | |
# Pad me right with </S> token. | |
for i in range(batch_size): | |
inputs[i] += [END_TOKEN] * (input_length - len(inputs[i])) | |
outputs[i] += [END_TOKEN] * (output_length - len(outputs[i])) | |
return { | |
'input:0': inputs, | |
'output:0': outputs | |
} | |
return input_fn, feed_fn | |
def load_vocab(filename): | |
vocab = {} | |
with open(filename) as f: | |
for idx, line in enumerate(f): | |
vocab[line.strip()] = idx | |
return vocab | |
def get_rev_vocab(vocab): | |
return {idx: key for key, idx in vocab.iteritems()} | |
def get_formatter(keys, vocab): | |
rev_vocab = get_rev_vocab(vocab) | |
def to_str(sequence): | |
tokens = [ | |
rev_vocab.get(x, "<UNK>") for x in sequence] | |
return ' '.join(tokens) | |
def format(values): | |
res = [] | |
for key in keys: | |
res.append("%s = %s" % (key, to_str(values[key]))) | |
return '\n'.join(res) | |
return format | |
def train_seq2seq( | |
input_filename, output_filename, vocab_filename, | |
model_dir): | |
vocab = load_vocab(vocab_filename) | |
params = { | |
'vocab_size': len(vocab), | |
'batch_size': 32, | |
'input_max_length': 30, | |
'output_max_length': 30, | |
'embed_dim': 100, | |
'num_units': 256 | |
} | |
est = tf.estimator.Estimator( | |
model_fn=seq2seq, | |
model_dir=model_dir, params=params) | |
input_fn, feed_fn = make_input_fn( | |
params['batch_size'], | |
input_filename, | |
output_filename, | |
vocab, params['input_max_length'], params['output_max_length']) | |
# Make hooks to print examples of inputs/predictions. | |
print_inputs = tf.train.LoggingTensorHook( | |
['input_0', 'output_0'], every_n_iter=100, | |
formatter=get_formatter(['input_0', 'output_0'], vocab)) | |
print_predictions = tf.train.LoggingTensorHook( | |
['predictions', 'train_pred'], every_n_iter=100, | |
formatter=get_formatter(['predictions', 'train_pred'], vocab)) | |
est.train( | |
input_fn=input_fn, | |
hooks=[tf.train.FeedFnHook(feed_fn), print_inputs, print_predictions], | |
steps=10000) | |
def main(): | |
tf.logging._logger.setLevel(logging.INFO) | |
train_seq2seq('input', 'output', 'vocab', 'model/seq2seq') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Can anyone guide me about how to use BahdanauAttention. when i use it like "tf.contrib.seq2seq.BahdanauAttention" or "seq2seq.BahdanauAttention" in either case i get an error"AttributeError: module 'tensorflow.contrib.seq2seq' has no attribute 'BahdanauAttention'. I'm using tensorflow 1.0.1. I'm new to deep learning. Any suggestion regarding will be appreciated.
Thank you.