Created
April 8, 2021 10:15
-
-
Save ivanpanshin/1f31980e9c0ede334f91c8dcb13e8402 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class ArcModule(nn.Module): | |
def __init__(self, in_features, out_features, s=10, m=0.5): | |
super().__init__() | |
self.in_features = in_features | |
self.out_features = out_features | |
self.s = s | |
self.m = m | |
self.weight = nn.Parameter(torch.FloatTensor(out_features, in_features)) | |
nn.init.xavier_normal_(self.weight) | |
self.cos_m = math.cos(m) | |
self.sin_m = math.sin(m) | |
self.th = torch.tensor(math.cos(math.pi - m)).half() | |
self.mm = torch.tensor(math.sin(math.pi - m) * m).half() | |
# self.th = torch.tensor(math.cos(math.pi - m)).clone().detach().requires_grad_(True) | |
# self.mm = torch.tensor(math.sin(math.pi - m) * m).clone().detach().requires_grad_(True) | |
def forward(self, inputs, labels): | |
cos_th = F.linear(inputs, F.normalize(self.weight)) | |
cos_th = cos_th.clamp(-1, 1) | |
sin_th = torch.sqrt(1.0 - torch.pow(cos_th, 2)) | |
cos_th_m = (cos_th * self.cos_m - sin_th * self.sin_m).half() | |
# print(type(cos_th), type(self.th), type(cos_th_m), type(self.mm)) | |
cos_th_m = torch.where(cos_th > self.th, cos_th_m, cos_th - self.mm) | |
cond_v = cos_th - self.th | |
cond = cond_v <= 0 | |
cos_th_m[cond] = (cos_th - self.mm)[cond] | |
if labels.dim() == 1: | |
labels = labels.unsqueeze(-1) | |
onehot = torch.zeros(cos_th.size()).cuda() | |
labels = labels.type(torch.LongTensor).cuda() | |
onehot.scatter_(1, labels, 1.0) | |
outputs = onehot * cos_th_m + (1.0 - onehot) * cos_th | |
outputs = outputs * self.s | |
return outputs | |
class ArcFaceModel(nn.Module): | |
def __init__(self, embed_size, num_classes, dropout_rate): | |
super(ArcFaceModel, self).__init__() | |
# self.backbone = torchvision.models.resnet50(pretrained=True) | |
# self.in_features = self.backbone.fc.in_features | |
# self.backbone.fc = common_functions.Identity() | |
self.backbone = timm.create_model('resnet18', pretrained=False) | |
self.in_features = self.backbone.fc.in_features | |
self.embed_size = embed_size | |
self.num_classes = num_classes | |
self.margin = ArcModule(in_features=self.embed_size, out_features=self.num_classes) | |
self.bn1 = nn.BatchNorm2d(self.in_features) | |
self.dropout = nn.Dropout2d(dropout_rate, inplace=True) | |
self.fc1 = nn.Linear(self.in_features * 16 * 16, self.embed_size) | |
self.bn2 = nn.BatchNorm1d(self.embed_size) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment