Skip to content

Instantly share code, notes, and snippets.

View ivanpanshin's full-sized avatar

Ivan Panshin ivanpanshin

View GitHub Profile
@ivanpanshin
ivanpanshin / swa.py
Created May 11, 2021 10:33
swa for pytorch
def swa(paths):
state_dicts = []
for path in paths:
state_dicts.append(torch.load(path)["model_state_dict"])
average_dict = OrderedDict()
for k in state_dicts[0].keys():
average_dict[k] = sum([state_dict[k] for state_dict in state_dicts]) / len(state_dicts)
return average_dict
class ArcModule(nn.Module):
def __init__(self, in_features, out_features, s=10, m=0.5):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.s = s
self.m = m
self.weight = nn.Parameter(torch.FloatTensor(out_features, in_features))
nn.init.xavier_normal_(self.weight)
import os
import onnx
import torch
import torch.nn as nn
import onnxruntime as ort
from onnxsim import simplify
from PIL import Image
from ssd.config import cfg
from ssd.data.datasets import COCODataset, VOCDataset
import argparse
import onnx
import torch
import torchvision
import onnxruntime as ort
from onnxsim import simplify
import numpy as np
if __name__ == '__main__':
model = torchvision.models.resnet18(pretrained=True).cuda().eval()
dummy_input = torch.ones(1, 3, 224, 224, device="cuda")
import utils.inference as inference_utils # TRT/TF inference wrappers
import utils.model as model_utils # UFF conversion
import tensorrt as trt
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='TRT params')
parser.add_argument('--FP', default="32", type=str)
args = parser.parse_args()
import onnx
import torch
import numpy as np
import onnxruntime as ort
import torchvision as tv
from onnxsim import simplify
dummy_input = torch.ones(1, 3, 300, 300, device="cuda")
pt_model_det = tv.models.resnet50().cuda().eval().requires_grad_(False)
pre_det_res = pt_model_det(dummy_input.cuda())
print(f"Torch output shape: {pre_det_res.shape}")
import onnx
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
#import cv2
from PIL import Image
import os
import matplotlib.pyplot as plt
import time
@ivanpanshin
ivanpanshin / keypoints.py
Last active June 14, 2020 22:00
keypoints with Caffe2 example
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
from detectron2.export.caffe2_inference import ProtobufDetectionModel
from detectron2.export.api import Caffe2Model
import numpy as np
import os
import torch
import cv2
import time
import shutil
@ivanpanshin
ivanpanshin / main.py
Last active May 18, 2020 14:09
Caffe2 model example
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
from detectron2.export.caffe2_inference import ProtobufDetectionModel
from detectron2.export.api import Caffe2Model
import numpy as np
import os
import torch
import cv2
print("Required modules imported.")
@ivanpanshin
ivanpanshin / app.py
Last active April 29, 2020 22:26
app.py with POST request
from flask import Flask, request, jsonify
server = Flask(__name__)
def run_request():
index = int(request.json['index'])
list = ['red', 'green', 'blue', 'yellow', 'black']
return list[index]
@server.route('/', methods=['GET', 'POST'])