Skip to content

Instantly share code, notes, and snippets.

@ivanpanshin
Created September 11, 2020 08:29
Show Gist options
  • Save ivanpanshin/fe9c7d0aeba5a7f58f09b132be62fc80 to your computer and use it in GitHub Desktop.
Save ivanpanshin/fe9c7d0aeba5a7f58f09b132be62fc80 to your computer and use it in GitHub Desktop.
import utils.inference as inference_utils # TRT/TF inference wrappers
import utils.model as model_utils # UFF conversion
import tensorrt as trt
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='TRT params')
parser.add_argument('--FP', default="32", type=str)
args = parser.parse_args()
FP = args.FP
if FP == '32':
trt_datatype = trt.DataType.FLOAT
engine_name = 'resnet50_engine.buf'
elif FP == '16':
trt_datatype = trt.DataType.HALF
engine_name = 'resnet50_engine_half.buf'
else:
print('Wrong precision')
onnx_model_path = 'resnet50_simple.onnx'
input_img_path = 'hotdog.jpg'
trt_inference_wrapper = inference_utils.TRTInference(
engine_name, onnx_model_path, trt_datatype)
print('done, running inference')
detection_out = trt_inference_wrapper.infer(input_img_path, 'image')
print(detection_out)
print('finished inference')
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment