Goals: Add links that are reasonable and good explanations of how stuff works. No hype and no vendor content if possible. Practical first-hand accounts of models in prod eagerly sought.
| from typing import Generic, TypeVar | |
| import numpy as np | |
| from pydantic.fields import ModelField | |
| JSON_ENCODERS = { | |
| np.ndarray: lambda arr: arr.tolist() | |
| } | |
| DType = TypeVar('DType') |
| #!/usr/bin/env python3 | |
| '''2021-03-26: Reverse-engineer by searching for the following terms in features*.js: | |
| - bracketMaintenanceMarginRate | |
| - cumFastMaintenanceAmount | |
| - bracketNotionalFloor | |
| - bracketNotionalCap''' | |
| # (max) position, maintenance margin, maintenance amount | |
| maint_lookup_table = [ |
| #!/usr/bin/env python3 | |
| from __future__ import annotations | |
| import json | |
| class CompactJSONEncoder(json.JSONEncoder): | |
| """A JSON Encoder that puts small containers on single lines.""" | |
| CONTAINER_TYPES = (list, tuple, dict) |
| \documentclass[15pt]{scrartcl} | |
| \usepackage[a6paper,left=1cm,right=1cm,top=2cm,bottom=1cm,heightrounded]{geometry} | |
| \usepackage[svgnames]{xcolor} | |
| \usepackage{pdflscape} | |
| \usepackage{setspace} | |
| \usepackage[utf8]{inputenc} | |
| \usepackage[T1]{fontenc} | |
| \usepackage{graphicx} | |
| \usepackage{wallpaper} | |
| \usepackage[normalem]{ulem} |
| """ | |
| In jupyter notebook simple logging to console | |
| """ | |
| import logging | |
| import sys | |
| logging.basicConfig(stream=sys.stdout, level=logging.INFO) | |
| # Test | |
| logger = logging.getLogger('LOGGER_NAME') |
This environment is dependent off a common network for docker/git plugin and gitea-server, so for this work fine in closed networks we have to create a custom network before run this composefile.
First create your network:
docker network create gitea-network| """ | |
| 以下の論文で提案された改良x-means法の実装 | |
| クラスター数を自動決定するk-meansアルゴリズムの拡張について | |
| http://www.rd.dnc.ac.jp/~tunenori/doc/xmeans_euc.pdf | |
| """ | |
| import numpy as np | |
| from scipy import stats | |
| from sklearn.cluster import KMeans |
A personal diary of DataFrame munging over the years.
Convert Series datatype to numeric (will error if column has non-numeric values)
(h/t @makmanalp)