Skip to content

Instantly share code, notes, and snippets.

@jamesrajendran
jamesrajendran / ML - PairPlot - pandas
Created June 14, 2017 06:44
ML - PairPlot - using Advertisement data using Jupyter
import pandas as pd
import seaborn as sns
data = pd.read_csv('C:\work\ML\Advertising.csv', index_col= 0)
print(data.head())
%matplotlib inline
#sns.pairplot (data, x_vars=['TV','Radio','Newspaper'], y_vars='Sales')
#feature_cols =['TV','Radio','Newspaper']
#print(feature_cols)
X = data[['TV','Radio','Newspaper']]
from sklearn.cross_validation import train_test_split
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.neighbors import KNeighborsClassifier
iris = load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4 )
@jamesrajendran
jamesrajendran / ML - Metrics
Last active June 13, 2017 06:53
metrics comparison of KNeighborClassifier and LinearRegression
from sklearn import metrics
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
y = iris.target
logreg = LogisticRegression()
@jamesrajendran
jamesrajendran / ML - Logistic Regression
Created June 13, 2017 06:39
LogisticRegression - Linear-model
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
iris = load_iris()
X = iris.data
y = iris.target
logreg = LogisticRegression()
logreg.fit(X,y)
logreg.predict(X[0])
from sklearn.datasets import load_iris
from sklearn.neighbors import KNeighborsClassifier
#Load the data
iris = load_iris()
type(iris)
print(iris)
print( iris.feature_names)
print(iris.target)
select lo.*,
a.sql_text
from gv$sqlarea a, gv$session_longops lo
where lo.sql_id = a.sql_id
order by lo.start_time;
select s.sid,
s.username,
s.machine,
@jamesrajendran
jamesrajendran / ML
Last active May 26, 2017 09:30
Machine Learning
# Spark ML example
# Here is the code URL (courtesy): https://github.com/jayantshekhar/strata-2016/blob/master/src/main/scala/com/cloudera/spark/spamdetection/Spam.scala
------------------------
// scalastyle:off println
package com.cloudera.spark.spamdetection
import scala.beans.BeanInfo
import org.apache.spark.{SparkConf, SparkContext}
@jamesrajendran
jamesrajendran / Kafka - code
Last active June 19, 2017 10:06
kafka Producer - consumer code example
package kafkaHome;
import java.util.Properties;
//import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.*;
//import org.apache.kafka.clients.producer.ProducerRecord;
//import org.apache.kafka.clients.producer.RecordMetadata;
public class SimpleProducer {
@jamesrajendran
jamesrajendran / LinuxCommands
Last active March 2, 2020 13:35
Useful linux commands
env # to get all env variables
#Find class files in a jar
all_hdp_classes () {
find -L /usr/hdp/current -maxdepth 20 -name "*.jar" -print | while read line; do
for i in `jar tf $line | grep .class`
do
echo $line : $i
done
done
@jamesrajendran
jamesrajendran / Spark-Shell Tips
Created May 14, 2017 14:24
Spark Shell related Tips
// SHELL COMMANDS FROM SPARK SHELL
:sh hdfs dfs -ls /user/cloudera
<result> foreach println //use the result variable like 'res0' in the place of <result>