Created
November 5, 2021 01:31
-
-
Save jbryer/487177a7d777ce3fa3fc337d4d878761 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(tidyverse) | |
library(reshape2) | |
library(lubridate) | |
library(rnoaa) | |
token <- '' # Get token here: https://www.ncdc.noaa.gov//cdo-web/token | |
options(noaakey = token) | |
marathon_dates <- c('2021-01-10','2020-01-12','2019-01-13', | |
'2018-01-07','2017-01-08','2016-01-10','2015-01-11','2014-01-12', | |
'2013-01-13','2012-01-08','2011-01-09','2010-01-10','2009-01-11', | |
'2008-01-13','2007-01-07','2006-01-08','2005-01-09','2004-01-11', | |
'2003-01-12','2002-01-06','2001-01-07','2000-01-09','1999-01-10', | |
'1998-01-11','1997-01-05','1996-01-07','1995-01-08','1994-01-16') %>% | |
as.Date() | |
# Find the closest weather station | |
x <- isd_stations_search(lat = 28.3772, lon = -81.5707, radius = 17) | |
x | |
weather <- data.frame(date = marathon_dates, | |
min_temp = NA_real_, | |
max_temp = NA_real_, | |
start_temp = NA_real_, | |
avg_temp = NA_real_, | |
avg_wind_speed = NA_real_) %>% | |
mutate(year = year(date)) | |
for(i in 1:nrow(weather)) { | |
weather_data <- isd(usaf = x[1,]$usaf, wban = x[1,]$wban, year = year(weather[i,]$date)) %>% | |
dplyr::filter(temperature != '+9999') %>% ## remove +9999's | |
dplyr::mutate(temp_celsuis = as.numeric(temperature) / 10, | |
temp_fahrenheit = temp_celsuis * 9/5 +32, | |
date_time = parse_date_time(paste0(date, time), 'y-m-d HM', tz = 'America/New_York'), | |
date = as.Date(date, format = '%Y%m%d'), | |
wind_speed = 1.60934 * as.numeric(wind_speed) / 10, | |
time_from_start = abs(date_time - as.POSIXct(paste0(date, ' 05:30:00'), tz = 'America/New_York')) | |
) %>% | |
dplyr::filter(date == weather[i,]$date) %>% | |
select(date, time, date_time, temp_celsuis, temp_fahrenheit, wind_speed, time_from_start) | |
if(nrow(weather_data) > 0) { | |
weather[i,]$min_temp <- min(weather_data$temp_fahrenheit, na.rm = TRUE) | |
weather[i,]$max_temp <- max(weather_data$temp_fahrenheit, na.rm = TRUE) | |
weather[i,]$start_temp <- weather_data[weather_data$time_from_start == min(weather_data$time_from_start),]$temp_fahrenheit | |
weather[i,]$avg_temp <- mean(weather_data$temp_fahrenheit, na.rm = TRUE) | |
weather[i,]$avg_wind_speed <- mean(weather_data$wind_speed, na.rm = TRUE) | |
} else { | |
print(paste0('No data found for ', weather[i,]$date)) | |
} | |
} | |
weather <- weather[complete.cases(weather),] | |
weather.melt <- melt(weather[,c('year', 'min_temp', 'max_temp', 'start_temp', 'avg_temp', 'avg_wind_speed')], | |
id.vars = c('year', 'start_temp', 'avg_temp', 'avg_wind_speed')) | |
ggplot(weather.melt, aes(x = year)) + | |
geom_ribbon(data = weather, aes(ymin = min_temp, ymax = max_temp), alpha = 0.3, fill = 'skyblue') + | |
geom_path(aes(y = start_temp, group = variable), color = 'maroon') + | |
geom_point(aes(y = start_temp), color = 'maroon') + | |
geom_path(aes(y = value, group = variable)) + | |
geom_point(aes(y = value, size = avg_wind_speed)) + | |
geom_text(data = weather, aes(y = max_temp, label = paste0(max_temp, '°')), vjust = -1) + | |
geom_text(data = weather, aes(y = min_temp, label = paste0(min_temp, '°')), vjust = 2) + | |
scale_x_continuous(breaks = seq(min(weather$year), max(weather$year))) + | |
scale_size_continuous('Wind\nSpeed\n(mph)') + | |
ylim(c(25, 85)) + | |
ylab('Temperature (Fahrenheit)') + xlab('') + theme_minimal() + | |
ggtitle('Disney Marathon Weather', | |
subtitle = 'Temperature range and starting temperatures (in red)') | |
ggsave('DisneyMarathonWeather.png', width = 10, height = 4) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment