Skip to content

Instantly share code, notes, and snippets.

@lzghzr
lzghzr / 544+ flr 解锁56G直连.md
Last active April 17, 2025 02:51
544+ flr 解锁56G直连
@jrzaurin
jrzaurin / train_lightgbm_with_focal_loss.py
Last active August 5, 2020 06:44
How to use custom loss for training lightgbm
focal_loss = lambda x,y: focal_loss_lgb(x, y, alpha=0.25, gamma=1.)
focal_loss_eval = lambda x,y: focal_loss_lgb_eval_error(x, y, alpha=0.25, gamma=1.)
model = lgb.train(best, self.lgtrain, fobj=focal_loss, feval=focal_loss_eval)
@ii-research-yu
ii-research-yu / lightgbm_custom_obj_lambdarank.py
Created June 24, 2019 07:16
lightgbm_custom_obj_lambdarank
def lightgbm_custom_obj_lambdarank(preds, train_data, first_order=False, constant_hessian=1.0):
'''
:param preds: numpy.ndarray of shape (size_data, )
:param train_data:
:return:
'''
all_labels = train_data.get_label() # numpy.ndarray of shape (size_data, )
group = train_data.get_group() # numpy.ndarray of shape (num_queries, )
size_data = len(all_labels)
@mbinna
mbinna / effective_modern_cmake.md
Last active May 7, 2025 15:38
Effective Modern CMake

Effective Modern CMake

Getting Started

For a brief user-level introduction to CMake, watch C++ Weekly, Episode 78, Intro to CMake by Jason Turner. LLVM’s CMake Primer provides a good high-level introduction to the CMake syntax. Go read it now.

After that, watch Mathieu Ropert’s CppCon 2017 talk Using Modern CMake Patterns to Enforce a Good Modular Design (slides). It provides a thorough explanation of what modern CMake is and why it is so much better than “old school” CMake. The modular design ideas in this talk are based on the book [Large-Scale C++ Software Design](https://www.amazon.de/Large-Scale-Soft

@allwefantasy
allwefantasy / autoencoder-sentence-similarity.py
Last active April 28, 2020 02:39
使用自编码器网络实现语句相似度
import tensorflow as tf
import random
import numpy as np
import time
BASIC_HOME = "/Users/allwefantasy/Downloads"
WORD_VECTOR_FILE = BASIC_HOME + '/laiwen/zhuhl_laiwen_word_embedding'
WORD_FILE = BASIC_HOME + '/laiwen/zhuhl_laiwen_keywords2'
WORD_RESULT_VECTOR_FILE = BASIC_HOME + '/laiwen/WORD_RESULT_VECTOR_FILE4'
MODEL_SAVE_DIR = BASIC_HOME + '/laiwen/model/autoencoder'
@mommi84
mommi84 / awesome-kge.md
Last active April 14, 2025 11:27
Awesome Knowledge Graph Embedding Approaches
@huming2207
huming2207 / README.md
Last active May 11, 2022 14:10
OpenWrt Chaos Calmer 15.05.1 Linux kernel configuration for SV3-26026

OpenWrt 15.05 Chaos Calmer Linux Kernel Configuration for Seavo SV3-260xx

What it is

This is a Linux Kernel 3.18 configuration for Seavo SV3-260xx series motherboard.

It has:

  • Intel Atom N2600 dual-core CPU
  • Intel GMA3650 (SGX545) GPU
  • Several RS232 serial ports
@gitaarik
gitaarik / git_submodules.md
Last active May 4, 2025 16:01
Git Submodules basic explanation

Git Submodules basic explanation

Why submodules?

In Git you can add a submodule to a repository. This is basically a repository embedded in your main repository. This can be very useful. A couple of usecases of submodules:

  • Separate big codebases into multiple repositories.
@bwhite
bwhite / rank_metrics.py
Created September 15, 2012 03:23
Ranking Metrics
"""Information Retrieval metrics
Useful Resources:
http://www.cs.utexas.edu/~mooney/ir-course/slides/Evaluation.ppt
http://www.nii.ac.jp/TechReports/05-014E.pdf
http://www.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf
http://hal.archives-ouvertes.fr/docs/00/72/67/60/PDF/07-busa-fekete.pdf
Learning to Rank for Information Retrieval (Tie-Yan Liu)
"""
import numpy as np
@halpo
halpo / 000-instructions.md
Created June 19, 2012 16:40
harvestr R users conference presentation.

Building a beamer presentation with knitr.

Introduction

The documents included are the input for knitr. In addition you need to have the tool pandoc installed. I also use a custom beamer template to add the University of Utah \institute command to the template. It also changes the indentation some.

Steps

  1. knit document with