git clone [email protected]:YOUR-USERNAME/YOUR-FORKED-REPO.git
cd into/cloned/fork-repo
git remote add upstream git://github.com/ORIGINAL-DEV-USERNAME/REPO-YOU-FORKED-FROM.git
git fetch upstream
#from https://rosettacode.org/wiki/LU_decomposition#Python | |
from pprint import pprint | |
def matrixMul(A, B): | |
TB = zip(*B) | |
return [[sum(ea*eb for ea,eb in zip(a,b)) for b in TB] for a in A] | |
def pivotize(m): | |
"""Creates the pivoting matrix for m.""" | |
n = len(m) |
# This is an example for the CIFAR-10 dataset. | |
# There's a function for creating a train and validation iterator. | |
# There's also a function for creating a test iterator. | |
# Inspired by https://discuss.pytorch.org/t/feedback-on-pytorch-for-kaggle-competitions/2252/4 | |
from utils import plot_images | |
def get_train_valid_loader(data_dir, | |
batch_size, | |
augment, |
import argparse | |
import os | |
import shutil | |
import time | |
import torch | |
import torch.nn as nn | |
import torch.nn.parallel | |
import torch.backends.cudnn as cudnn | |
import torch.optim |
###byte pair encoding | |
###Neural Machine Translation of Rare Words with Subword Units | |
###from https://plmsmile.github.io/2017/10/19/subword-units/ | |
import re | |
def process_raw_words(words, endtag='-'): | |
'''把单词分割成最小的符号,并且加上结尾符号''' | |
vocabs = {} | |
for word, count in words.items(): | |
# 加上空格 | |
word = re.sub(r'([a-zA-Z])', r' \1', word) |
{ | |
"mappings": { | |
"docs": { | |
"dynamic": true, | |
"properties": { | |
"time": { | |
"type": "date", | |
"format": "yyyyMMdd", | |
"store": "true" | |
}, |
git clone [email protected]:YOUR-USERNAME/YOUR-FORKED-REPO.git
cd into/cloned/fork-repo
git remote add upstream git://github.com/ORIGINAL-DEV-USERNAME/REPO-YOU-FORKED-FROM.git
git fetch upstream
Compile the C++ code creating a shared library (or shared object in UNIX) | |
$ clang++ TestJNI.cpp -o libTestJNI.so -fPIC -shared -std=c++11 -I$HOME/opt/java/include -I$HOME/opt/java/include/linux | |
Run the application | |
$ scala -save load.scala | |
dir = /home/archbox/opengl/jni/libTestJNI.so | |
Hello world java | |
i = 0 |
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | |
## Created by: Hang Zhang, Rutgers University, Email: [email protected] | |
## Modified by Thomas Wolf, HuggingFace Inc., Email: [email protected] | |
## Copyright (c) 2017-2018 | |
## | |
## This source code is licensed under the MIT-style license found in the | |
## LICENSE file in the root directory of this source tree | |
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | |
"""Encoding Data Parallel""" |
# -*- coding: utf-8 -*- | |
import struct | |
import os | |
# 由于原代码不适用python3且有大量bug | |
# 以及有函数没有必要使用且一些代码书写不太规范或冗余 | |
# 所以本人在原有的大框架基本不动的情况下作了大量的细节更改。 | |
# 使得没有乱码出现,文件夹导入更方便等等。 | |
# Author:Ling Yue, Taiyuan U of Tech |
import numpy as np | |
def make_lsh_model(nb_tables, nb_bits, nb_dimensions, vector_sample): | |
# vector_sample: np arr w/ shape (2 * nb_tables * nb_tables, nb_dimensions). | |
# normals, midpoints: np arrs w/ shape (nb_bits, nb_dimensions) | |
# thresholds: np arrs w/ shape (nb_bits) | |
# all_normals, all_thresholds: lists w/ one normal, one threshold per table. | |
all_normals, all_thresholds = [], [] | |
for i in range(0, len(vector_sample), 2 * nb_bits): | |
vector_sample_a = vector_sample[i:i + nb_bits] |