Skip to content

Instantly share code, notes, and snippets.

@jiqiujia
jiqiujia / gist:4fe14917fbfb5740667de08901b90e6d
Created November 1, 2018 02:33 — forked from CristinaSolana/gist:1885435
Keeping a fork up to date

1. Clone your fork:

git clone [email protected]:YOUR-USERNAME/YOUR-FORKED-REPO.git

2. Add remote from original repository in your forked repository:

cd into/cloned/fork-repo
git remote add upstream git://github.com/ORIGINAL-DEV-USERNAME/REPO-YOU-FORKED-FROM.git
git fetch upstream
@jiqiujia
jiqiujia / mapping.json
Last active September 12, 2018 03:50
elasticsearch demo
{
"mappings": {
"docs": {
"dynamic": true,
"properties": {
"time": {
"type": "date",
"format": "yyyyMMdd",
"store": "true"
},
@jiqiujia
jiqiujia / bpe.py
Last active October 13, 2018 03:02
nlp
###byte pair encoding
###Neural Machine Translation of Rare Words with Subword Units
###from https://plmsmile.github.io/2017/10/19/subword-units/
import re
def process_raw_words(words, endtag='-'):
'''把单词分割成最小的符号,并且加上结尾符号'''
vocabs = {}
for word, count in words.items():
# 加上空格
word = re.sub(r'([a-zA-Z])', r' \1', word)
@jiqiujia
jiqiujia / finetune.py
Created January 21, 2018 06:07 — forked from panovr/finetune.py
Fine-tuning pre-trained models with PyTorch
import argparse
import os
import shutil
import time
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
@jiqiujia
jiqiujia / data_loader.py
Created January 21, 2018 06:07 — forked from kevinzakka/data_loader.py
Train, Validation and Test Split for torchvision Datasets
# This is an example for the CIFAR-10 dataset.
# There's a function for creating a train and validation iterator.
# There's also a function for creating a test iterator.
# Inspired by https://discuss.pytorch.org/t/feedback-on-pytorch-for-kaggle-competitions/2252/4
from utils import plot_images
def get_train_valid_loader(data_dir,
batch_size,
augment,
@jiqiujia
jiqiujia / lu_pivot.py
Last active November 17, 2017 08:06
numerical linear algebra
#from https://rosettacode.org/wiki/LU_decomposition#Python
from pprint import pprint
def matrixMul(A, B):
TB = zip(*B)
return [[sum(ea*eb for ea,eb in zip(a,b)) for b in TB] for a in A]
def pivotize(m):
"""Creates the pivoting matrix for m."""
n = len(m)
@jiqiujia
jiqiujia / hessians.py
Created November 3, 2017 01:38
tensorflow utils
### Adapted from TF repo
import tensorflow as tf
from tensorflow import gradients
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
def hessian_vector_product(ys, xs, v):
@jiqiujia
jiqiujia / shape_index.py
Created November 2, 2017 12:11 — forked from davecg/shape_index.py
Calculate 3D shape index using PyTorch
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
import torchvision
import torchvision.transforms as transforms
import numpy as np
@jiqiujia
jiqiujia / plot.py
Last active July 24, 2017 13:15
python plot util
#plot tiled images
fig = plt.figure(figsize=(8,8))
#adjust the white space around the figure and each subplot
plt.subplots_adjust(wspace=0.01, hspace=0.01, left=0, right=1, bottom=0, top=1)
for i in range(63):
ax = plt.subplot(8,8,i+1)
plt.imshow(imgs[i])
ax.axis('off') #no frame
#ax.get_xaxis().set_visible(False)
#ax.get_yaxis().set_visible(False)
@jiqiujia
jiqiujia / elastic_transform.py
Created May 24, 2017 03:06 — forked from chsasank/elastic_transform.py
Elastic transformation of an image in Python
import numpy as np
from scipy.ndimage.interpolation import map_coordinates
from scipy.ndimage.filters import gaussian_filter
def elastic_transform(image, alpha, sigma, random_state=None):
"""Elastic deformation of images as described in [Simard2003]_.
.. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for
Convolutional Neural Networks applied to Visual Document Analysis", in