Last active
October 18, 2023 18:08
-
-
Save joelouismarino/ce239b5601fff2698895f48003f7464b to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
def whiten(X, method='zca'): | |
""" | |
Whitens the input matrix X using specified whitening method. | |
Inputs: | |
X: Input data matrix with data examples along the first dimension | |
method: Whitening method. Must be one of 'zca', 'zca_cor', 'pca', | |
'pca_cor', or 'cholesky'. | |
""" | |
X = X.reshape((-1, np.prod(X.shape[1:]))) | |
X_centered = X - np.mean(X, axis=0) | |
Sigma = np.dot(X_centered.T, X_centered) / X_centered.shape[0] | |
W = None | |
if method in ['zca', 'pca', 'cholesky']: | |
U, Lambda, _ = np.linalg.svd(Sigma) | |
if method == 'zca': | |
W = np.dot(U, np.dot(np.diag(1.0 / np.sqrt(Lambda + 1e-5)), U.T)) | |
elif method =='pca': | |
W = np.dot(np.diag(1.0 / np.sqrt(Lambda + 1e-5)), U.T) | |
elif method == 'cholesky': | |
W = np.linalg.cholesky(np.dot(U, np.dot(np.diag(1.0 / (Lambda + 1e-5)), U.T))).T | |
elif method in ['zca_cor', 'pca_cor']: | |
V_sqrt = np.diag(np.std(X, axis=0)) | |
P = np.dot(np.dot(np.linalg.inv(V_sqrt), Sigma), np.linalg.inv(V_sqrt)) | |
G, Theta, _ = np.linalg.svd(P) | |
if method == 'zca_cor': | |
W = np.dot(np.dot(G, np.dot(np.diag(1.0 / np.sqrt(Theta + 1e-5)), G.T)), np.linalg.inv(V_sqrt)) | |
elif method == 'pca_cor': | |
W = np.dot(np.dot(np.diag(1.0/np.sqrt(Theta + 1e-5)), G.T), np.linalg.inv(V_sqrt)) | |
else: | |
raise Exception('Whitening method not found.') | |
return np.dot(X_centered, W.T) |
Hi, based on https://rdrr.io/cran/whitening/src/R/whiteningMatrix.R and my tests, I think that in zca_cor
/pca_cor
you should be using 1/V_sqrt
where you are using V_sqrt
to finish the expressions for W
. See my fork if I'm being unclear. Thanks a bunch for this nice gist!
@cwindolf Thanks for the catch! I've updated the gist to use the inverse matrices.
Thanks, very useful!
TU, now how do you inverse the transform?
Thanks!!
Alternative method: using whiten
parameter of sklearn
's PCA
.
from sklearn.decomposition import PCA
X_white = PCA(n_components = X.shape[1], whiten = True, svd_solver='full').fit_transform(X)
Note that the rotation of the transformed data may differ.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
thanks for this!