Skip to content

Instantly share code, notes, and snippets.

@jolespin
Forked from mblondel/lda_gibbs.py
Created October 5, 2016 23:57
Show Gist options
  • Save jolespin/f81164bd9b11e8eef60a90cd73baab8c to your computer and use it in GitHub Desktop.
Save jolespin/f81164bd9b11e8eef60a90cd73baab8c to your computer and use it in GitHub Desktop.
Latent Dirichlet Allocation with Gibbs sampler
"""
(C) Mathieu Blondel - 2010
License: BSD 3 clause
Implementation of the collapsed Gibbs sampler for
Latent Dirichlet Allocation, as described in
Finding scientifc topics (Griffiths and Steyvers)
"""
import numpy as np
import scipy as sp
from scipy.special import gammaln
def sample_index(p):
"""
Sample from the Multinomial distribution and return the sample index.
"""
return np.random.multinomial(1,p).argmax()
def word_indices(vec):
"""
Turn a document vector of size vocab_size to a sequence
of word indices. The word indices are between 0 and
vocab_size-1. The sequence length is equal to the document length.
"""
for idx in vec.nonzero()[0]:
for i in xrange(int(vec[idx])):
yield idx
def log_multi_beta(alpha, K=None):
"""
Logarithm of the multinomial beta function.
"""
if K is None:
# alpha is assumed to be a vector
return np.sum(gammaln(alpha)) - gammaln(np.sum(alpha))
else:
# alpha is assumed to be a scalar
return K * gammaln(alpha) - gammaln(K*alpha)
class LdaSampler(object):
def __init__(self, n_topics, alpha=0.1, beta=0.1):
"""
n_topics: desired number of topics
alpha: a scalar (FIXME: accept vector of size n_topics)
beta: a scalar (FIME: accept vector of size vocab_size)
"""
self.n_topics = n_topics
self.alpha = alpha
self.beta = beta
def _initialize(self, matrix):
n_docs, vocab_size = matrix.shape
# number of times document m and topic z co-occur
self.nmz = np.zeros((n_docs, self.n_topics))
# number of times topic z and word w co-occur
self.nzw = np.zeros((self.n_topics, vocab_size))
self.nm = np.zeros(n_docs)
self.nz = np.zeros(self.n_topics)
self.topics = {}
for m in xrange(n_docs):
# i is a number between 0 and doc_length-1
# w is a number between 0 and vocab_size-1
for i, w in enumerate(word_indices(matrix[m, :])):
# choose an arbitrary topic as first topic for word i
z = np.random.randint(self.n_topics)
self.nmz[m,z] += 1
self.nm[m] += 1
self.nzw[z,w] += 1
self.nz[z] += 1
self.topics[(m,i)] = z
def _conditional_distribution(self, m, w):
"""
Conditional distribution (vector of size n_topics).
"""
vocab_size = self.nzw.shape[1]
left = (self.nzw[:,w] + self.beta) / \
(self.nz + self.beta * vocab_size)
right = (self.nmz[m,:] + self.alpha) / \
(self.nm[m] + self.alpha * self.n_topics)
p_z = left * right
# normalize to obtain probabilities
p_z /= np.sum(p_z)
return p_z
def loglikelihood(self):
"""
Compute the likelihood that the model generated the data.
"""
vocab_size = self.nzw.shape[1]
n_docs = self.nmz.shape[0]
lik = 0
for z in xrange(self.n_topics):
lik += log_multi_beta(self.nzw[z,:]+self.beta)
lik -= log_multi_beta(self.beta, vocab_size)
for m in xrange(n_docs):
lik += log_multi_beta(self.nmz[m,:]+self.alpha)
lik -= log_multi_beta(self.alpha, self.n_topics)
return lik
def phi(self):
"""
Compute phi = p(w|z).
"""
V = self.nzw.shape[1]
num = self.nzw + self.beta
num /= np.sum(num, axis=1)[:, np.newaxis]
return num
def run(self, matrix, maxiter=30):
"""
Run the Gibbs sampler.
"""
n_docs, vocab_size = matrix.shape
self._initialize(matrix)
for it in xrange(maxiter):
for m in xrange(n_docs):
for i, w in enumerate(word_indices(matrix[m, :])):
z = self.topics[(m,i)]
self.nmz[m,z] -= 1
self.nm[m] -= 1
self.nzw[z,w] -= 1
self.nz[z] -= 1
p_z = self._conditional_distribution(m, w)
z = sample_index(p_z)
self.nmz[m,z] += 1
self.nm[m] += 1
self.nzw[z,w] += 1
self.nz[z] += 1
self.topics[(m,i)] = z
# FIXME: burn-in and lag!
yield self.phi()
if __name__ == "__main__":
import os
import shutil
N_TOPICS = 10
DOCUMENT_LENGTH = 100
FOLDER = "topicimg"
def vertical_topic(width, topic_index, document_length):
"""
Generate a topic whose words form a vertical bar.
"""
m = np.zeros((width, width))
m[:, topic_index] = int(document_length / width)
return m.flatten()
def horizontal_topic(width, topic_index, document_length):
"""
Generate a topic whose words form a horizontal bar.
"""
m = np.zeros((width, width))
m[topic_index, :] = int(document_length / width)
return m.flatten()
def save_document_image(filename, doc, zoom=2):
"""
Save document as an image.
doc must be a square matrix
"""
height, width = doc.shape
zoom = np.ones((width*zoom, width*zoom))
# imsave scales pixels between 0 and 255 automatically
sp.misc.imsave(filename, np.kron(doc, zoom))
def gen_word_distribution(n_topics, document_length):
"""
Generate a word distribution for each of the n_topics.
"""
width = n_topics / 2
vocab_size = width ** 2
m = np.zeros((n_topics, vocab_size))
for k in range(width):
m[k,:] = vertical_topic(width, k, document_length)
for k in range(width):
m[k+width,:] = horizontal_topic(width, k, document_length)
m /= m.sum(axis=1)[:, np.newaxis] # turn counts into probabilities
return m
def gen_document(word_dist, n_topics, vocab_size, length=DOCUMENT_LENGTH, alpha=0.1):
"""
Generate a document:
1) Sample topic proportions from the Dirichlet distribution.
2) Sample a topic index from the Multinomial with the topic
proportions from 1).
3) Sample a word from the Multinomial corresponding to the topic
index from 2).
4) Go to 2) if need another word.
"""
theta = np.random.mtrand.dirichlet([alpha] * n_topics)
v = np.zeros(vocab_size)
for n in range(length):
z = sample_index(theta)
w = sample_index(word_dist[z,:])
v[w] += 1
return v
def gen_documents(word_dist, n_topics, vocab_size, n=500):
"""
Generate a document-term matrix.
"""
m = np.zeros((n, vocab_size))
for i in xrange(n):
m[i, :] = gen_document(word_dist, n_topics, vocab_size)
return m
if os.path.exists(FOLDER):
shutil.rmtree(FOLDER)
os.mkdir(FOLDER)
width = N_TOPICS / 2
vocab_size = width ** 2
word_dist = gen_word_distribution(N_TOPICS, DOCUMENT_LENGTH)
matrix = gen_documents(word_dist, N_TOPICS, vocab_size)
sampler = LdaSampler(N_TOPICS)
for it, phi in enumerate(sampler.run(matrix)):
print "Iteration", it
print "Likelihood", sampler.loglikelihood()
if it % 5 == 0:
for z in range(N_TOPICS):
save_document_image("topicimg/topic%d-%d.png" % (it,z),
phi[z,:].reshape(width,-1))
@jolespin
Copy link
Author

jolespin commented Oct 5, 2016

You should try to add this to sklearn

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment