"nvidia-smi has failed because it couldn't communicate with the NVIDIA driver"
- Disable Secure Boot
| -- original code: https://github.com/ericelliott/cuid | |
| -- Add the "plv8" extension | |
| create extension if not exists "plv8"; | |
| -- Add the "pgcrypto" extension | |
| create extension if not exists "pgcrypto"; | |
| \dx | |
| -- Connect a database |
| import keras.backend as K | |
| import tensorflow as tf | |
| from keras.layers import Layer | |
| """Not tested, I'll play around with GANs soon with it.""" | |
| class CoordConv2D(Layer): | |
| def __init__(self, channel, kernel, padding='valid', **kwargs): | |
| self.layer = Conv2D(channel, kernel, padding=padding) |
| #!/bin/bash | |
| docker run -it --rm --privileged --net host \ | |
| -v /tmp/.X11-unix:/tmp/.X11-unix \ | |
| -v $PWD:$HOME/workspace \ | |
| -v $HOME/.Xauthority:$HOME/.Xauthority \ | |
| -e HOME=$HOME \ | |
| -e DISPLAY=$DISPLAY \ | |
| --entrypoint /usr/sbin/ffmpeg \ | |
| kfei/ffmpeg $* |
| #!/bin/bash | |
| docker run -it --rm --privileged --net host \ | |
| -v /tmp/.X11-unix:/tmp/.X11-unix \ | |
| -v $PWD:$HOME/workspace \ | |
| -v $HOME/.Xauthority:$HOME/.Xauthority \ | |
| -e HOME=$HOME \ | |
| -e DISPLAY=$DISPLAY \ | |
| --entrypoint /usr/sbin/ffmpeg \ | |
| kfei/ffmpeg $* |
| import numpy as np | |
| import tensorflow as tf | |
| import matplotlib.pyplot as plt | |
| from tensorflow.contrib.distributions import Bernoulli | |
| class VariationalDense: | |
| """Variational Dense Layer Class""" | |
| def __init__(self, n_in, n_out, model_prob, model_lam): | |
| self.model_prob = model_prob |
| FLAGS = flags.FLAGS | |
| if FLAGS.log_dir: | |
| if not os.path.exists(FLAGS.log_dir): | |
| os.makedirs(FLAGS.log_dir) | |
| logging.get_absl_handler().use_absl_log_file() |
| """ | |
| Clean and simple Keras implementation of network architectures described in: | |
| - (ResNet-50) [Deep Residual Learning for Image Recognition](https://arxiv.org/pdf/1512.03385.pdf). | |
| - (ResNeXt-50 32x4d) [Aggregated Residual Transformations for Deep Neural Networks](https://arxiv.org/pdf/1611.05431.pdf). | |
| Python 3. | |
| """ | |
| from keras import layers | |
| from keras import models |
| # cuda | |
| export PATH=/usr/local/cuda-9.2/bin${PATH:+:${PATH}} | |
| export LD_LIBRARY_PATH=/usr/local/cuda-9.2/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} | |
| export LD_LIBRARY_PATH=/usr/local/cuda/extras/CUPTI/lib64:$LD_LIBRARY_PATH | |
| # python | |
| alias env='source ./env/bin/activate' |
"nvidia-smi has failed because it couldn't communicate with the NVIDIA driver"
| import six | |
| import tensorflow as tf | |
| from tensorflow.python.framework import ops | |
| from tensorflow.python.training import training_util | |
| from tensorflow.python.training.session_run_hook import SessionRunArgs | |
| class RayTuneReportingHook(tf.train.SessionRunHook): | |
| def __init__(self, params, reporter): | |
| self.reporter = reporter |