npm init -y
npm i --save-dev nodemon
npm add babel-preset-env babel-cli
Create a .babelrc
config in your project root. Insert the following
{
"presets": ["env"]
#!/usr/bin/env python | |
# Dependencies: | |
# ffmpeg: https://www.ffmpeg.org/download.html | |
# fpcalc: https://acoustid.org/chromaprint | |
from datetime import datetime | |
import os | |
import os.path | |
import json | |
import math | |
import shutil |
import re | |
import requests | |
import js2py | |
def getContent(url): | |
javascript=js2py.EvalJs() | |
javascript.eval(requests.get(re.search("(https?://.*?\.[a-zA-Z0-9.]{0,20})",url).group(1)+"/aes.js").text) | |
return requests.get(url, headers={"Cookie":javascript.eval(re.search("\<script\>(fu.*?;)\<", requests.get(url).text).group(1).replace("document.cookie", "cookie").replace("location.", "")+"cookie")}) | |
print(getContent("http://krypton-byte.byethost5.com/")) |
class NeuMF(torch.nn.Module): | |
def __init__(self, config): | |
super(NeuMF, self).__init__() | |
#mf part | |
self.embedding_user_mf = torch.nn.Embedding(num_embeddings=self.num_users, embedding_dim=self.latent_dim_mf) | |
self.embedding_item_mf = torch.nn.Embedding(num_embeddings=self.num_items, embedding_dim=self.latent_dim_mf) | |
#mlp part | |
self.embedding_user_mlp = torch.nn.Embedding(num_embeddings=self.num_users, embedding_dim=self.latent_dim_mlp) |
//License CC0 1.0: https://creativecommons.org/publicdomain/zero/1.0/ | |
class Deferred extends React.Component { | |
constructor(props) { | |
super(props); | |
this.state = { | |
value: '' | |
}; | |
} | |
componentDidMount() { |
const a = [{ | |
'id': '1', | |
'name': 'a1' | |
}, { | |
'id': '2', | |
'name': 'a2' | |
}, { | |
'id': '3', | |
'name': 'a3' | |
}]; |
'use strict'; | |
!function() { | |
/** | |
* @return {?} | |
*/ | |
function t$jscomp$0() { | |
return "cf-marker-" + Math.random().toString().slice(2); | |
} | |
/** | |
* @return {undefined} |
#!/usr/bin/env python | |
# Dependencies: | |
# ffmpeg: https://www.ffmpeg.org/download.html | |
# fpcalc: https://acoustid.org/chromaprint | |
from datetime import datetime | |
import os | |
import os.path | |
import json | |
import math | |
import shutil |
class NeuMF(torch.nn.Module): | |
def __init__(self, config): | |
super(NeuMF, self).__init__() | |
#mf part | |
self.embedding_user_mf = torch.nn.Embedding(num_embeddings=self.num_users, embedding_dim=self.latent_dim_mf) | |
self.embedding_item_mf = torch.nn.Embedding(num_embeddings=self.num_items, embedding_dim=self.latent_dim_mf) | |
#mlp part | |
self.embedding_user_mlp = torch.nn.Embedding(num_embeddings=self.num_users, embedding_dim=self.latent_dim_mlp) |
const io = require('socket.io-client'); | |
const socket = io('http://localhost:3000', { | |
transportOptions: { | |
polling: { | |
extraHeaders: { | |
'Authorization': 'Bearer abc', | |
}, | |
}, | |
}, |