Skip to content

Instantly share code, notes, and snippets.

@kobigurk
Last active November 28, 2022 21:48
Show Gist options
  • Save kobigurk/352036cee6cb8e44ddf0e231ee9c3f9b to your computer and use it in GitHub Desktop.
Save kobigurk/352036cee6cb8e44ddf0e231ee9c3f9b to your computer and use it in GitHub Desktop.

$p$ (size of the finite field over which the curve is defined) = 5739212180072054691886037078074598258234828766015465682035977006377650233269727206694786492328072119776769214299497

$q$ (size of the subgroup of the elliptic curve) = 1114157594638178892192613

$k$ (embedding degree) = 12

$d_1$ (highest power of $\tau$ in the $\mathbb{G}_1$ portion of the SRS) = 11726539

$d_2$ (highest power of $\tau$ in the $\mathbb{G}_2$ portion of the SRS) = 690320833

Curve equation = $E : y^2 = x^3 + 4$. This is a pairing friendly curve meaning that $E(F_p)$ contains a subgroup of size $q$ and $E(F_{p^k})$ contains a different subgroup of size $q$

$P \in \mathbb{G}_1$ (generator in $\mathbb{G}_1$) = (4366845981406663127346140105392043296067620632748305894915559567990751463871846461571751242076416842353760718219463, 2322936086289479068066490612801140015408721761579169972917817367391045591350600034547617432914931369293155123935728)

$\tau P \in \mathbb{G}_1$ = (4098523714512767373909357151251054769972251070043521443432671846694698445310918888674563384159054413429407635337545, 5104199250567875649831070757916425527562742910121942289068977475282886267374972984853923971702383949149250750103817)

$\tau^{d_1} P \in \mathbb{G}_1$ = (5666793736468521094298738103921693621508309431638529348089160865885867964805742107934338916926827890667749984768215, 3326251098281288448602352180414320622119338868949804322483594574847275370379159993188118130786632123868776051955196)

$Q \in \mathbb{G}_2$ (generator in $\mathbb{G}_2$) = (2847190178490156899798643792842723617787968359868175140038826869144776012793105029391523604954249120667126821536281 + 1513797577242500304678874752065526230408447782356629533374984043360635354098197307045487457331199798062484459984831 ∗ u, 2398127858646538650279262747029238501121661957103909673770298065006753715123740323569605568913154172079135187452386 + 5444946257649901533268220138726124417824817651440748374257708320447300055543369665159277001725118567443194417165086 ∗ u)

$\tau^{d_2} Q \in \mathbb{G}_2$ = (3536383419772898871062064633012296862124372086039789534814905834326827967479599778599887194095392165550880125330266 + 2315075704417849395497347082310199859284883937672695000597201154920791698799875018503579607990866594389648640170976 ∗ u, 58522461936731088989461032245338237080030815519467180488197672431529427745827070450637290003234818635632376291077 + 200313434320582884299950030908390796161004965251373896142196467499133624968316891420231529223691679020778320981956 ∗ u)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment