Last active
December 4, 2018 12:46
-
-
Save korkridake/81a7a0547a42adc63c3e67ab9301cb5b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # ------------------------------------------------------------------------------------------- | |
| # ------------------------------------------------------------------------------------------- | |
| # Develop a Neural Network with MXNet in Five Minutes | |
| # R Notebook Author: @Korkrid Akepanidtaworn | |
| # Tutorial from MXNet Community | |
| # Source: https://mxnet.incubator.apache.org/tutorials/r/fiveMinutesNeuralNetwork.html | |
| # ------------------------------------------------------------------------------------------- | |
| # ------------------------------------------------------------------------------------------- | |
| library(mlbench) | |
| library(tidyverse) | |
| library(caret) | |
| library(e1071) | |
| # To install MXNet, you need to run these 4 lines of codes | |
| cran <- getOption("repos") | |
| cran["dmlc"] <- "https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/R/CRAN/" | |
| options(repos = cran) | |
| # install.packages("mxnet") | |
| library(mxnet) | |
| # ------------------------------------------------------------------------------------------- | |
| # ------------------------------------------------------------------------------------------- | |
| # Load Data | |
| # ------------------------------------------------------------------------------------------- | |
| # ------------------------------------------------------------------------------------------- | |
| # This is the data set used by Gorman and Sejnowski in their study of the classification of sonar signals using a neural network [1]. The task is to train a network to discriminate between sonar signals bounced off a metal cylinder and those bounced off a roughly cylindrical rock. Eachpatternisasetof60numbersintherange 0.0to 1.0. Eachnumberrepresentstheenergywithin a particular frequency band, integrated over a certain period of time. The integration aperture for higherfrequenciesoccurlaterintime,sincethesefrequenciesaretransmittedlaterduringthechirp. The label associated with each record contains the letter "R" if the object is a rock and "M" if it is a mine (metal cylinder). The numbers in the labels are in increasing order of aspect angle, but they do not encode the angle directly. | |
| data(Sonar, package="mlbench") | |
| head(Sonar) | |
| # V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 | |
| # 1 0.0200 0.0371 0.0428 0.0207 0.0954 0.0986 0.1539 0.1601 0.3109 0.2111 0.1609 0.1582 0.2238 0.0645 0.0660 0.2273 0.3100 | |
| # 2 0.0453 0.0523 0.0843 0.0689 0.1183 0.2583 0.2156 0.3481 0.3337 0.2872 0.4918 0.6552 0.6919 0.7797 0.7464 0.9444 1.0000 | |
| # 3 0.0262 0.0582 0.1099 0.1083 0.0974 0.2280 0.2431 0.3771 0.5598 0.6194 0.6333 0.7060 0.5544 0.5320 0.6479 0.6931 0.6759 | |
| # 4 0.0100 0.0171 0.0623 0.0205 0.0205 0.0368 0.1098 0.1276 0.0598 0.1264 0.0881 0.1992 0.0184 0.2261 0.1729 0.2131 0.0693 | |
| # 5 0.0762 0.0666 0.0481 0.0394 0.0590 0.0649 0.1209 0.2467 0.3564 0.4459 0.4152 0.3952 0.4256 0.4135 0.4528 0.5326 0.7306 | |
| # 6 0.0286 0.0453 0.0277 0.0174 0.0384 0.0990 0.1201 0.1833 0.2105 0.3039 0.2988 0.4250 0.6343 0.8198 1.0000 0.9988 0.9508 | |
| # V18 V19 V20 V21 V22 V23 V24 V25 V26 V27 V28 V29 V30 V31 V32 V33 V34 | |
| # 1 0.2999 0.5078 0.4797 0.5783 0.5071 0.4328 0.5550 0.6711 0.6415 0.7104 0.8080 0.6791 0.3857 0.1307 0.2604 0.5121 0.7547 | |
| # 2 0.8874 0.8024 0.7818 0.5212 0.4052 0.3957 0.3914 0.3250 0.3200 0.3271 0.2767 0.4423 0.2028 0.3788 0.2947 0.1984 0.2341 | |
| # 3 0.7551 0.8929 0.8619 0.7974 0.6737 0.4293 0.3648 0.5331 0.2413 0.5070 0.8533 0.6036 0.8514 0.8512 0.5045 0.1862 0.2709 | |
| # 4 0.2281 0.4060 0.3973 0.2741 0.3690 0.5556 0.4846 0.3140 0.5334 0.5256 0.2520 0.2090 0.3559 0.6260 0.7340 0.6120 0.3497 | |
| # 5 0.6193 0.2032 0.4636 0.4148 0.4292 0.5730 0.5399 0.3161 0.2285 0.6995 1.0000 0.7262 0.4724 0.5103 0.5459 0.2881 0.0981 | |
| # 6 0.9025 0.7234 0.5122 0.2074 0.3985 0.5890 0.2872 0.2043 0.5782 0.5389 0.3750 0.3411 0.5067 0.5580 0.4778 0.3299 0.2198 | |
| # V35 V36 V37 V38 V39 V40 V41 V42 V43 V44 V45 V46 V47 V48 V49 V50 V51 | |
| # 1 0.8537 0.8507 0.6692 0.6097 0.4943 0.2744 0.0510 0.2834 0.2825 0.4256 0.2641 0.1386 0.1051 0.1343 0.0383 0.0324 0.0232 | |
| # 2 0.1306 0.4182 0.3835 0.1057 0.1840 0.1970 0.1674 0.0583 0.1401 0.1628 0.0621 0.0203 0.0530 0.0742 0.0409 0.0061 0.0125 | |
| # 3 0.4232 0.3043 0.6116 0.6756 0.5375 0.4719 0.4647 0.2587 0.2129 0.2222 0.2111 0.0176 0.1348 0.0744 0.0130 0.0106 0.0033 | |
| # 4 0.3953 0.3012 0.5408 0.8814 0.9857 0.9167 0.6121 0.5006 0.3210 0.3202 0.4295 0.3654 0.2655 0.1576 0.0681 0.0294 0.0241 | |
| # 5 0.1951 0.4181 0.4604 0.3217 0.2828 0.2430 0.1979 0.2444 0.1847 0.0841 0.0692 0.0528 0.0357 0.0085 0.0230 0.0046 0.0156 | |
| # 6 0.1407 0.2856 0.3807 0.4158 0.4054 0.3296 0.2707 0.2650 0.0723 0.1238 0.1192 0.1089 0.0623 0.0494 0.0264 0.0081 0.0104 | |
| # V52 V53 V54 V55 V56 V57 V58 V59 V60 Class | |
| # 1 0.0027 0.0065 0.0159 0.0072 0.0167 0.0180 0.0084 0.0090 0.0032 1 | |
| # 2 0.0084 0.0089 0.0048 0.0094 0.0191 0.0140 0.0049 0.0052 0.0044 1 | |
| # 3 0.0232 0.0166 0.0095 0.0180 0.0244 0.0316 0.0164 0.0095 0.0078 1 | |
| # 4 0.0121 0.0036 0.0150 0.0085 0.0073 0.0050 0.0044 0.0040 0.0117 1 | |
| # 5 0.0031 0.0054 0.0105 0.0110 0.0015 0.0072 0.0048 0.0107 0.0094 1 | |
| # 6 0.0045 0.0014 0.0038 0.0013 0.0089 0.0057 0.0027 0.0051 0.0062 1 | |
| Sonar$Class = ifelse(Sonar$Class == 'R', 0, 1) | |
| # ------------------------------------------------------------------------------------------- | |
| # ------------------------------------------------------------------------------------------- | |
| # Split Training/Testing 80:20 | |
| # ------------------------------------------------------------------------------------------- | |
| # ------------------------------------------------------------------------------------------- | |
| # 80% of the sample size | |
| smp_size <- floor(0.60 * nrow(Sonar)) | |
| # Set the seed to make your partition reproducible | |
| set.seed(1234) | |
| train_ind <- sample(seq_len(nrow(Sonar)), size = smp_size) | |
| train <- Sonar[train_ind, ] | |
| test <- Sonar[-train_ind, ] | |
| train_x = as.matrix(train[, 1:60]) | |
| train_y = as.numeric(as.matrix(train[, 61])) | |
| test_x = as.matrix(test[, 1:60]) | |
| test_y = as.numeric(as.matrix(test[, 61])) | |
| # ------------------------------------------------------------------------------------------- | |
| # ------------------------------------------------------------------------------------------- | |
| # Train the Neural Network Model | |
| # Description: use a multi-layer perceptron as our classifier. | |
| # In mxnet, we have a function called mx.mlp for building a general multi-layer neural network | |
| # to do classification or regression. | |
| # ------------------------------------------------------------------------------------------- | |
| # ------------------------------------------------------------------------------------------- | |
| mx.set.seed(1234) | |
| model <- mx.mlp(train_x, | |
| train_y, | |
| hidden_node=10, | |
| out_node=2, | |
| out_activation="softmax", | |
| num.round = 20, | |
| array.batch.size = 15, | |
| learning.rate = 0.07, | |
| momentum = 0.9, | |
| eval.metric = mx.metric.accuracy) | |
| # Start training with 1 devices | |
| # [1] Train-accuracy=0.400000009271834 | |
| # [2] Train-accuracy=0.459259268310335 | |
| # [3] Train-accuracy=0.43703705072403 | |
| # [4] Train-accuracy=0.451851861344443 | |
| # [5] Train-accuracy=0.429629640446769 | |
| # [6] Train-accuracy=0.474074088864856 | |
| # [7] Train-accuracy=0.614814837773641 | |
| # [8] Train-accuracy=0.622222244739532 | |
| # [9] Train-accuracy=0.60000001721912 | |
| # [10] Train-accuracy=0.629629648394055 | |
| # [11] Train-accuracy=0.651851872603099 | |
| # [12] Train-accuracy=0.703703721364339 | |
| # [13] Train-accuracy=0.711111128330231 | |
| # [14] Train-accuracy=0.688888907432556 | |
| # [15] Train-accuracy=0.674074093500773 | |
| # [16] Train-accuracy=0.762962977091471 | |
| # [17] Train-accuracy=0.785185197989146 | |
| # [18] Train-accuracy=0.800000011920929 | |
| # [19] Train-accuracy=0.770370384057363 | |
| # [20] Train-accuracy=0.75555557012558 | |
| summary(model) | |
| # Length Class Mode | |
| # symbol 1 Rcpp_MXSymbol S4 | |
| # arg.params 4 -none- list | |
| # aux.params 0 -none- list | |
| graph.viz(model$symbol) | |
| # ------------------------------------------------------------------------------------------- | |
| # ------------------------------------------------------------------------------------------- | |
| # Predict on the Test Data | |
| # ------------------------------------------------------------------------------------------- | |
| # ------------------------------------------------------------------------------------------- | |
| test_pred = predict(model, test_x) # Array of Predicted Probabilities | |
| test_pred = t(test_pred) # Predicted probabilities (for Prediction Wrangling) | |
| test_pred = as.data.frame(test_pred) | |
| test_pred | |
| # [,1] [,2] | |
| # [1,] 0.426815450 0.5731846094 | |
| # [2,] 0.959362805 0.0406371839 | |
| # [3,] 0.773524523 0.2264754623 | |
| # [4,] 0.133803442 0.8661965728 | |
| # [5,] 0.784839451 0.2151605636 | |
| # [6,] 0.988470435 0.0115295900 | |
| # [7,] 0.992558479 0.0074415053 | |
| # [8,] 0.998107433 0.0018925916 | |
| # [9,] 0.618567407 0.3814325333 | |
| # [10,] 0.979754388 0.0202456508 | |
| # [11,] 0.997008383 0.0029916782 | |
| # [12,] 0.992276728 0.0077233198 | |
| # [13,] 0.999820054 0.0001799719 | |
| # Assume that [,1] is probability for 0 | |
| # Assume that [,2] is probability for 1 | |
| test_pred = test_pred %>% | |
| dplyr::rename(prob_0 = V1, | |
| prob_1 = V2) %>% | |
| dplyr::mutate(Class_Pred = ifelse(prob_1 > prob_0, 1, 0)) | |
| Class = test$Class | |
| test_eval = cbind(Class, test_pred) | |
| confusionMatrix(as.factor(test_eval$Class_Pred), | |
| as.factor(test_eval$Class), | |
| positive = '1') | |
| # Confusion Matrix and Statistics | |
| # | |
| # Reference | |
| # Prediction 0 1 | |
| # 0 32 20 | |
| # 1 2 30 | |
| # | |
| # Accuracy : 0.7381 | |
| # 95% CI : (0.6307, 0.828) | |
| # No Information Rate : 0.5952 | |
| # P-Value [Acc > NIR] : 0.0044768 | |
| # | |
| # Kappa : 0.4989 | |
| # Mcnemar's Test P-Value : 0.0002896 | |
| # | |
| # Sensitivity : 0.6000 | |
| # Specificity : 0.9412 | |
| # Pos Pred Value : 0.9375 | |
| # Neg Pred Value : 0.6154 | |
| # Prevalence : 0.5952 | |
| # Detection Rate : 0.3571 | |
| # Detection Prevalence : 0.3810 | |
| # Balanced Accuracy : 0.7706 | |
| # | |
| # 'Positive' Class : 1 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment