Skip to content

Instantly share code, notes, and snippets.

View kozo2's full-sized avatar

Kozo Nishida kozo2

View GitHub Profile

network select nodeList="YDL194W,YLR345W"

@kozo2
kozo2 / .bashrc
Last active July 29, 2023 13:37
rcfiles
# .bashrc
# User specific aliases and functions
alias rm='rm -i'
alias cp='cp -i'
alias mv='mv -i'
export CPATH=/root/hdf5-1.8.14-linux-centos5-x86_64-gcc482-shared/include:/root/boost_1_59_0
export LD_LIBRARY_PATH=/root/hdf5-1.8.14-linux-centos5-x86_64-gcc482-shared/lib:$LD_LIBRARY_PATH
@kozo2
kozo2 / example.py
Created September 29, 2019 05:36
handout for gsod
"""
# Basic Data Visualization
**Cytoscape is an open source software platform for integrating, visualizing, and analyzing measurement data in the context of networks.**
This tutorial presents a scenario of how expression and network data can be combined to tell a biological story and includes these concepts:
- Visualizing networks using expression data.
- Filtering networks based on expression data.
- Assessing expression data in the context of a biological network.
###markdown
# Charty Usage
## You can write Markdown!
- item1
- item2
###
require 'charty'
Checking with: BiocCheck( MSEAp_0.99.0.tar.gz ) 
12.62s$ Rscript -e "BiocCheck::BiocCheck(\"${PKG_TARBALL}\", 'quit-with-status'=TRUE)"
This is BiocCheck version 1.20.0. BiocCheck is a work in progress.
Output and severity of issues may change. Installing package...
* Checking Package Dependencies...
* Checking if other packages can import this one...
* Checking to see if we understand object initialization...
* Checking for deprecated package usage...
* Checking for remote package usage...
name: example-environment
channels:
- plotly
- defaults
- conda-forge
dependencies:
- jupyterlab-dash
- dash
import dash
import dash_core_components as dcc
import dash_html_components as html
import dash_bio
import pandas as pd
import kegg2cyjs
import plotly.graph_objs as go
# df = pd.read_csv("./ecoliLeucineRMA.csv")
import pandas as pd
df = pd.read_csv("./eLeuRMA.txt", sep='\t')
gene_df = df[df['Unnamed: 0'].str.contains(pat='b[0-9]{4}')]
foo = gene_df['Unnamed: 0'].str.extract(r'(b[0-9]{4})')
foo = foo[0].str.replace("b", "eco:b")
gene_df.update(foo.rename('Unnamed: 0'))
gene_df.columns = gene_df.columns.str.replace("/home/laurent/Affymetrix_data/ecoli_sample//", "")
gene_df.columns = gene_df.columns.str.replace("Unnamed: 0", "keggids")
gene_df.to_csv('ecoliLeucineRMA.csv', index=False)
library(ecoliLeucine)
data("ecoliLeucine")
library(affy)
eset <- rma(ecoliLeucine)
write.exprs(eset, "eLeuRMA.txt")