Skip to content

Instantly share code, notes, and snippets.

@kuc-arc-f
Last active December 25, 2025 05:00
Show Gist options
  • Select an option

  • Save kuc-arc-f/ed6abc2442c50859975125e0e04bbe38 to your computer and use it in GitHub Desktop.

Select an option

Save kuc-arc-f/ed6abc2442c50859975125e0e04bbe38 to your computer and use it in GitHub Desktop.
python , Qdrant example
from qdrant_client import QdrantClient
from qdrant_client.models import PointStruct
import random
client = QdrantClient(
url="http://localhost:6333"
)
points = [
PointStruct(
id=1,
vector=[0.1, 0.2, 0.3],
payload={
"title": "テストデータ",
"category": "sample"
}
)
]
client.upsert(
collection_name="sample_collection",
points=points
)
from qdrant_client import QdrantClient
COLLE_NAME="sample_collection"
# 1. クライアントの初期化(ローカルの場合)
client = QdrantClient("localhost", port=6333)
# 2. 指定した名前のコレクションを削除
collection_name = COLLE_NAME
response = client.delete_collection(collection_name=collection_name)
# 結果の確認
if response:
print(f"コレクション '{collection_name}' を削除しました。")
else:
print(f"コレクション '{collection_name}' の削除に失敗したか、存在しません。")
from qdrant_client import QdrantClient
from qdrant_client.models import PointStruct
import random
COLLE_NAME="sample_collection"
EMBED_SIZE=3
#EMBED_SIZE=1536
client = QdrantClient(
url="http://localhost:6333"
)
client.recreate_collection(
collection_name=COLLE_NAME,
vectors_config={
"size": EMBED_SIZE,
"distance": "Cosine", # Cosine / Dot / Euclid
}
)
from qdrant_client import QdrantClient
from qdrant_client.models import PointStruct
import random
COLLE_NAME="sample_collection"
client = QdrantClient(
url="http://localhost:6333"
)
search_result = client.query_points(
collection_name=COLLE_NAME,
query=[0.1, 0.2, 0.3], # 生成したEmbedding(ベクトル)
limit=5, # 上位5件を取得
#with_payload=True # メタデータも一緒に取得
)
for hit in search_result.points:
print(f"ID: {hit.id}, Data: {hit.payload}")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment