Skip to content

Instantly share code, notes, and snippets.

View laksjdjf's full-sized avatar
🌏
On Earth

laksjdjf

🌏
On Earth
View GitHub Profile
import numpy as np
import pandas as pd
import gradio as gr
HUNYUAN_VIDEO_DEFAULT = [
"Hunyuan Video 544p",
"1.0, 1.06971, 1.29073, 1.11245, 1.09596, 1.05233, 1.01415, 1.05672, 1.00848, 1.03632, 1.02974, 1.00984, 1.03028, 1.00681, 1.06614, 1.05022, 1.02592, 1.01776, 1.02985, 1.00726, 1.03727, 1.01502, 1.00992, 1.03371, 0.9976, 1.02742, 1.0093, 1.01869, 1.00815, 1.01461, 1.01152, 1.03082, 1.0061, 1.02162, 1.01999, 0.99063, 1.01186, 1.0217, 0.99947, 1.01711, 0.9904, 1.00258, 1.00878, 0.97039, 0.97686, 0.94315, 0.97728, 0.91154, 0.86139, 0.76592",
50,
0.24,
-0.01,
'''
https://github.com/Zehong-Ma/MagCache
'''
from comfy.ldm.modules.diffusionmodules.openaimodel import forward_timestep_embed, timestep_embedding, th, apply_control
import comfy.patcher_extension
import json
def linear_interpolate(data: dict, num: float, scale: float) -> float:
if not data:
import torch
from PIL import Image, ImageDraw, ImageFont
import numpy as np
from comfy.cli_args import args
import os
FONT_PATH = "/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf"
def flatten_dict(d):
items = {}
import random
import comfy.patcher_extension
kawaii_aegigoe_list = [
"んっ…♡",
"あぁんっ…!",
"はぅっ…♡",
"くぅ…ん…",
"ひゃんっ!",
"ふぁ…♡",
import torch
def new_vec(mode, chunks, x):
xs = x.clone().chunk(chunks, dim=0)
ref_xs = torch.cat([xi[0].unsqueeze(0).expand(xi.shape[0], -1, -1).clone() for xi in xs], dim=0).clone()
if mode == "concat":
new_x = x.clone()
return torch.cat([new_x, ref_xs], dim=1)
else:

はい、承知いたしました。llama-cpp-python の内部構造や開発に関心のある方向けに、開発者ドキュメントを作成します。


llama-cpp-python 開発者向けドキュメント

1. 概要 (Overview)

llama-cpp-python は、C++ で実装された高性能な LLM 推論ライブラリ llama.cpp の Python バインディングです。主な目的は、llama.cpp の持つ高速な CPU/GPU 推論能力、メモリ効率(特に量子化モデル)、そして豊富な機能を、Python 開発者が容易に利用できるようにすることです。

import gradio as gr
import pandas as pd
import random
query_general_cache = None
query_character_cache = None
df = pd.read_csv("https://huggingface.co/datasets/furusu/aesthetic_score_danbooru2024/resolve/main/part/aes6_5.csv")
#df = pd.read_csv("aes6_5.csv")
df[["tags", "characters"]] = df[["tags", "characters"]].astype(str)
We can't make this file beautiful and searchable because it's too large.
1girl,5534972
highres,4664611
solo,4604237
long_hair,3972398
breasts,3142271
commentary_request,3080500
looking_at_viewer,2988390
blush,2705742
smile,2598137
open_mouth,2140390
import numpy as np
import matplotlib.pyplot as plt
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def inverse_sigmoid(y):
return np.log(y / (1 - y))
# 逆シグモイド関数の微分
================================================================================================================================================================
Layer (type (var_name)) Input Shape Output Shape Param # Kernel Shape
================================================================================================================================================================
SD3Transformer2DModel (SD3Transformer2DModel) -- [1, 16, 128, 128] -- --
├─PatchEmbed (pos_embed) [1, 16, 128, 128] [1, 4096, 1536] -- --
│ └─Conv2d (proj) [1, 16, 128, 128] [1, 1536, 64, 64] 99,840 [2, 2]
├─CombinedTimestepTextProjEmbeddings (time_text_embed) [1] [1, 1536] --