Last active
March 18, 2024 14:56
-
-
Save laksjdjf/07015c6cc6415d18631a8df2ff7aa4fe to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# https://huggingface.co/shadowlilac/aesthetic-shadow-v2 | |
from transformers import pipeline | |
import torch | |
from PIL import Image | |
from comfy.ldm.modules.attention import optimized_attention | |
def optimized_forward(self): | |
def forward(hidden_states, head_mask = None, output_attentions = False): | |
query = self.query(hidden_states) | |
key = self.key(hidden_states) | |
value = self.value(hidden_states) | |
context_layer = optimized_attention(query, key, value, self.num_attention_heads, head_mask) | |
outputs = (context_layer, None) if output_attentions else (context_layer,) | |
return outputs | |
return forward | |
def optimize(model): | |
for module in model.modules(): | |
if module.__class__.__name__ == "ViTSelfAttention": | |
module.forward = optimized_forward(module) | |
class LoadAestheticShadow: | |
@classmethod | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": ("STRING", {"default": "shadowlilac/aesthetic-shadow-v2"}), | |
"device": (["cuda", "cpu"], {"default": "cuda"}), | |
"optimize_attention": ("BOOLEAN", {"default": False}) | |
} | |
} | |
RETURN_TYPES = ("AESTHETIC_SHADOW_MODEL", ) | |
FUNCTION = "load" | |
CATEGORY = "aeshtetic-shadow" | |
def load(self, model, device, optimize_attention): | |
dtype = torch.float16 if device == "cuda" else torch.float32 | |
pipe = pipeline("image-classification", model=model, device=device, torch_dtype=dtype) | |
if optimize_attention: | |
optimize(pipe.model) | |
return (pipe, ) | |
class PredictAesthetic: | |
@classmethod | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE", ), | |
"model": ("AESTHETIC_SHADOW_MODEL", ), | |
}, | |
} | |
RETURN_TYPES = ("STRING", ) | |
FUNCTION = "predict" | |
CATEGORY = "aeshtetic-shadow" | |
def predict(self, image, model): | |
images = (image * 255).numpy().astype('uint8') | |
images = [Image.fromarray(image) for image in images] | |
results = [] | |
for image in images: # avoide batch processing | |
result = model(images=[image]) | |
if result[0][0]["label"] == "hq": | |
results.append(result[0][0]["score"]) | |
else: | |
results.append(result[0][1]["score"]) | |
string = "\n".join([f"image_{i+1}:{result:4f}" for i, result in enumerate(results)]) | |
return (string, ) | |
NODE_CLASS_MAPPINGS = { | |
"LoadAestheticShadow": LoadAestheticShadow, | |
"PredictAesthetic": PredictAesthetic | |
} | |
__all__ = ["NODE_CLASS_MAPPINGS"] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment