Last active
April 18, 2024 02:37
-
-
Save laksjdjf/5b032c4df66be910aa605b89d3234934 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def make_unet_conversion_map(): | |
unet_conversion_map_layer = [] | |
# unet | |
# https://github.com/kohya-ss/sd-scripts/blob/2d7389185c021bc527b414563c245c5489d6328a/library/sdxl_model_util.py#L293 | |
for i in range(3): # num_blocks is 3 in sdxl | |
# loop over downblocks/upblocks | |
for j in range(2): | |
# loop over resnets/attentions for downblocks | |
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." | |
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0." | |
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) | |
if i < 3: | |
# no attention layers in down_blocks.3 | |
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}" | |
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1" | |
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) | |
for j in range(3): | |
# loop over resnets/attentions for upblocks | |
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." | |
sd_up_res_prefix = f"output_blocks.{3*i + j}.0." | |
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) | |
# if i > 0: commentout for sdxl | |
# no attention layers in up_blocks.0 | |
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}" | |
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1" | |
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) | |
if i < 3: | |
# no downsample in down_blocks.3 | |
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv" | |
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op" | |
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) | |
# no upsample in up_blocks.3 | |
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0" | |
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}" # change for sdxl | |
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) | |
hf_mid_atn_prefix = "mid_block.attentions.0" | |
sd_mid_atn_prefix = "middle_block.1" | |
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) | |
for j in range(2): | |
hf_mid_res_prefix = f"mid_block.resnets.{j}." | |
sd_mid_res_prefix = f"middle_block.{2*j}." | |
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) | |
unet_conversion_map_resnet = [ | |
# (stable-diffusion, HF Diffusers) | |
("in_layers.0", "norm1"), | |
("in_layers.2", "conv1"), | |
("out_layers.0", "norm2"), | |
("out_layers.3", "conv2"), | |
("emb_layers.1", "time_emb_proj"), | |
("skip_connection", "conv_shortcut"), | |
] | |
unet_conversion_map = [] | |
for sd, hf in unet_conversion_map_layer: | |
if "resnets" in hf: | |
for sd_res, hf_res in unet_conversion_map_resnet: | |
unet_conversion_map.append((sd + sd_res, hf + hf_res)) | |
else: | |
unet_conversion_map.append((sd, hf)) | |
for j in range(2): | |
hf_time_embed_prefix = f"time_embedding.linear_{j+1}" | |
sd_time_embed_prefix = f"time_embed.{j*2}" | |
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix)) | |
for j in range(2): | |
hf_label_embed_prefix = f"add_embedding.linear_{j+1}" | |
sd_label_embed_prefix = f"label_emb.0.{j*2}" | |
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix)) | |
unet_conversion_map.append(("input_blocks.0.0", "conv_in")) | |
# controlnet | |
# created by chatgpt | |
mapping_dict = { | |
"input_hint_block.0": "controlnet_cond_embedding.conv_in", | |
# 以下、input_hint_blockの残りのマッピングを定義 | |
} | |
# input_hint_blockのマッピングを追加 | |
orig_index = 2 # 既に0番目は上で定義されているため2から開始 | |
diffusers_index = 0 | |
while diffusers_index < 6: | |
mapping_dict[f"input_hint_block.{orig_index}"] = f"controlnet_cond_embedding.blocks.{diffusers_index}" | |
diffusers_index += 1 | |
orig_index += 2 | |
# 最後のconv_outのマッピングを追加 | |
mapping_dict[f"input_hint_block.{orig_index}"] = "controlnet_cond_embedding.conv_out" | |
# down blocksとmid blockのマッピングを追加 | |
num_input_blocks = 12 | |
for i in range(num_input_blocks): | |
mapping_dict[f"zero_convs.{i}.0"] = f"controlnet_down_blocks.{i}" | |
mapping_dict["middle_block_out.0"] = "controlnet_mid_block" | |
mapping_dict.update({t[0]:t[1] for t in unet_conversion_map}) | |
return mapping_dict | |
def convert_key(key, mapping_dict): | |
new_key = key | |
for k,v in mapping_dict.items(): | |
new_key = new_key.replace(v, k) # diff to sgm | |
return new_key | |
def get_weight(down, up): | |
in_channel = down.shape[1] | |
rank = down.shape[0] | |
out_channel = up.shape[0] | |
kernel = () if down.dim() == 2 else down.shape[2:] | |
shape = (out_channel, in_channel) + kernel | |
down = down.reshape(rank, -1).to("cuda") | |
up = up.reshape(-1, rank).to("cuda") | |
weight = up @ down | |
weight = weight.reshape(shape) | |
return weight.to("cpu") | |
def merge_lora(controlnet, lora_weights): | |
mapping_dict = make_unet_conversion_map() | |
for name, modules in controlnet.named_modules(): | |
sgm_key = convert_key(name, mapping_dict) | |
if sgm_key + ".down" in lora_weights: | |
weight = get_weight(lora_weights[sgm_key + ".down"], lora_weights[sgm_key + ".up"]) | |
modules.weight.data = modules.weight.data + weight.to(modules.weight.data) | |
if sgm_key + ".weight" in lora_weights: | |
weight = lora_weights[sgm_key + ".weight"] | |
modules.weight.data = weight.to(modules.weight.data) | |
if sgm_key + ".bias" in lora_weights: | |
weight = lora_weights[sgm_key + ".bias"] | |
modules.bias.data = weight.to(modules.bias.data) | |
if __name__ == "__main__": | |
from diffusers import StableDiffusionXLControlNetPipeline, AutoencoderKL, ControlNetModel, UNet2DConditionModel | |
from diffusers.utils import load_image | |
from safetensors.torch import load_file, save_file | |
import torch | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
# load unet | |
unet = UNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="unet").to("cuda", torch.float16) | |
# load controlnet | |
controlnet = ControlNetModel.from_unet(unet).to("cuda", dtype=torch.float16) | |
controlnet.add_embedding.load_state_dict(unet.add_embedding.state_dict()) # avoid bug | |
lora_weights = load_file("control-lora-canny-rank128.safetensors") | |
merge_lora(controlnet, lora_weights) | |
# load pipe | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", unet=unet, controlnet=controlnet, vae=vae, torch_dtype=torch.float16 | |
) | |
pipe.to("cuda") | |
# https://huggingface.co/docs/diffusers/api/pipelines/controlnet_sdxl | |
prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting" | |
negative_prompt = "low quality, bad quality, sketches" | |
# download an image | |
image = load_image( | |
"https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png" | |
) | |
# get canny image | |
image = np.array(image) | |
image = cv2.Canny(image, 100, 200) | |
image = image[:, :, None] | |
image = np.concatenate([image, image, image], axis=2) | |
canny_image = Image.fromarray(image) | |
# generate image | |
image = pipe( | |
prompt=prompt, negative_prompt=negative_prompt, controlnet_conditioning_scale=1.0, image=canny_image | |
).images[0] | |
image.save("output.png") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment