Created
September 27, 2023 16:21
-
-
Save laksjdjf/6a66646954578555b9c24f93558aa194 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import numpy as np | |
from rembg import remove | |
class RembgMask: | |
@classmethod | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE", ), | |
} | |
} | |
RETURN_TYPES = ("IMAGE", "MASK") | |
FUNCTION = "rembg_mask" | |
CATEGORY = "image/preprocessors" | |
def rembg_mask(self, image): | |
rem_tensors = [] | |
masks = [] | |
for i in range(image.shape[0]): | |
rem_image = remove(np.array(torch.clip((255. * image[i]), 0, 255).round()).astype(np.uint8)) | |
rem_tensor = torch.tensor(rem_image[:,:,:3].astype(np.float32))/255 | |
mask = torch.tensor(rem_image[:,:,3].astype(np.float32))/255 | |
rem_tensors.append(rem_tensor) | |
masks.append(mask) | |
rem_tensors = torch.stack(rem_tensors) | |
masks = torch.stack(masks) | |
masks = masks if masks.shape[0] > 1 else masks[0] | |
return (rem_tensors, masks) | |
class MakeNoise: | |
@classmethod | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"width": ("INT", { | |
"default": 0, | |
"min": 0, #Minimum value | |
"max": 4096, #Maximum value | |
"step": 1, #Slider's step | |
"display": "number" # Cosmetic only: display as "number" or "slider" | |
}), | |
"height": ("INT", { | |
"default": 0, | |
"min": 0, #Minimum value | |
"max": 4096, #Maximum value | |
"step": 1, #Slider's step | |
"display": "number" # Cosmetic only: display as "number" or "slider" | |
}), | |
"grayscale":(["false", "true"], ) | |
} | |
} | |
RETURN_TYPES = ("IMAGE", ) | |
FUNCTION = "make_noise" | |
CATEGORY = "image" | |
def make_noise(self, width, height, grayscale): | |
if grayscale == "true": | |
return (torch.rand((1, height, width, 1)).repeat(1,1,1,3),) | |
else: | |
return (torch.rand((1, height, width, 3)),) | |
class ImageMasking: | |
@classmethod | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE", ), | |
"mask": ("MASK", ), | |
"weight": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "display": "number"}), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "image_masking" | |
CATEGORY = "image" | |
def image_masking(self, image, mask, weight): | |
return (image * mask.unsqueeze(0).unsqueeze(3) * weight + image * (1-weight),) | |
NODE_CLASS_MAPPINGS = { | |
"RembgMask": RembgMask, | |
"MakeNoise": MakeNoise, | |
"ImageMasking": ImageMasking | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
"RembgMask": "RembgMask", | |
"MakeNoise": "MakeNoise", | |
"ImageMasking": "ImageMasking" | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment