Last active
March 19, 2024 06:22
-
-
Save laksjdjf/77f34b4e3583e05de5d2ee09a9e7f4d8 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# https://github.com/huggingface/transformers/blob/838b87abe231fd70be5132088d0dee72a7bb8d62/src/transformers/models/opt/modeling_opt.py#L147 | |
""" | |
model = AutoModelForCausalLM.from_pretrained("p1atdev/dart-v1-sft") | |
apply_hook(model) | |
""" | |
import torch | |
import torch.nn as nn | |
def forward_hooker(self): | |
def forward( | |
hidden_states, | |
key_value_states = None, | |
past_key_value = None, | |
attention_mask = None, | |
layer_head_mask = None, | |
output_attentions = False, | |
): | |
"""Input shape: Batch x Time x Channel""" | |
bsz, tgt_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) * self.scaling | |
if past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
else: | |
# self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
if self.is_decoder: | |
past_key_value = (key_states, value_states) | |
query_states = self._shape(query_states, tgt_len, bsz) | |
attn_weights = torch.nn.functional.scaled_dot_product_attention( | |
query_states, | |
key_states, | |
value_states, | |
attn_mask=attention_mask, | |
dropout_p=self.dropout if self.training else 0.0, | |
scale=1 # already scaled (self.scaling) | |
) | |
attn_weights_reshaped = attn_weights.transpose(1, 2).reshape(bsz, tgt_len, self.embed_dim) | |
attn_output = self.out_proj(attn_weights_reshaped) | |
return attn_output, None, past_key_value | |
return forward | |
def apply_hook(model): | |
for name, module in model.named_modules(): | |
if module.__class__.__name__ == "OPTAttention": | |
module.forward = forward_hooker(module) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment