Last active
November 30, 2023 23:27
-
-
Save laksjdjf/cf15ae37e27d2f0f9b3d978e6d05ec31 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import comfy | |
from comfy.samplers import KSAMPLER | |
import torch | |
from comfy.k_diffusion.sampling import default_noise_sampler, get_ancestral_step, to_d, BrownianTreeNoiseSampler | |
from tqdm.auto import trange | |
@torch.no_grad() | |
def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, upscale_ratio=2.0, start_step=5, end_step=15, upscale_n_step=3): | |
"""Ancestral sampling with Euler method steps.""" | |
extra_args = {} if extra_args is None else extra_args | |
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler | |
s_in = x.new_ones([x.shape[0]]) | |
# make upscale info | |
upscale_steps = [] | |
step = start_step-1 | |
while step < end_step-1: | |
upscale_steps.append(step) | |
step += upscale_n_step | |
height, width = x.shape[2:] | |
upscale_shapes = [(int(height * (((upscale_ratio-1) / i) + 1)), int(width * (((upscale_ratio-1) / i) + 1))) for i in reversed(range(1, len(upscale_steps)+1))] | |
upscale_info = {k: v for k, v in zip(upscale_steps, upscale_shapes)} | |
for i in trange(len(sigmas) - 1, disable=disable): | |
denoised = model(x, sigmas[i] * s_in, **extra_args) | |
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta) | |
if callback is not None: | |
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) | |
d = to_d(x, sigmas[i], denoised) | |
# Euler method | |
dt = sigma_down - sigmas[i] | |
x = x + d * dt | |
if sigmas[i + 1] > 0: | |
# Resize | |
if i in upscale_info: | |
x = torch.nn.functional.interpolate(x, size=upscale_info[i], mode='bicubic', align_corners=False) | |
noise_sampler = default_noise_sampler(x) | |
noise = noise_sampler(sigmas[i], sigmas[i + 1]) | |
x = x + noise * sigma_up * s_noise | |
return x | |
@torch.no_grad() | |
def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, upscale_ratio=2.0, start_step=5, end_step=15, upscale_n_step=3): | |
"""Ancestral sampling with DPM-Solver++(2S) second-order steps.""" | |
extra_args = {} if extra_args is None else extra_args | |
s_in = x.new_ones([x.shape[0]]) | |
sigma_fn = lambda t: t.neg().exp() | |
t_fn = lambda sigma: sigma.log().neg() | |
# make upscale info | |
upscale_steps = [] | |
step = start_step-1 | |
while step < end_step-1: | |
upscale_steps.append(step) | |
step += upscale_n_step | |
height, width = x.shape[2:] | |
upscale_shapes = [(int(height * (((upscale_ratio-1) / i) + 1)), int(width * (((upscale_ratio-1) / i) + 1))) for i in reversed(range(1, len(upscale_steps)+1))] | |
upscale_info = {k: v for k, v in zip(upscale_steps, upscale_shapes)} | |
for i in trange(len(sigmas) - 1, disable=disable): | |
denoised = model(x, sigmas[i] * s_in, **extra_args) | |
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta) | |
if callback is not None: | |
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) | |
if sigma_down == 0: | |
# Euler method | |
d = to_d(x, sigmas[i], denoised) | |
dt = sigma_down - sigmas[i] | |
x = x + d * dt | |
else: | |
# DPM-Solver++(2S) | |
t, t_next = t_fn(sigmas[i]), t_fn(sigma_down) | |
r = 1 / 2 | |
h = t_next - t | |
s = t + r * h | |
x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised | |
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args) | |
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_2 | |
# Noise addition | |
if sigmas[i + 1] > 0: | |
# Resize | |
if i in upscale_info: | |
x = torch.nn.functional.interpolate(x, size=upscale_info[i], mode='bicubic', align_corners=False) | |
noise_sampler = default_noise_sampler(x) | |
noise = noise_sampler(sigmas[i], sigmas[i + 1]) | |
x = x + noise * sigma_up * s_noise | |
return x | |
@torch.no_grad() | |
def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint', upscale_ratio=2.0, start_step=5, end_step=15, upscale_n_step=3): | |
"""DPM-Solver++(2M) SDE.""" | |
if solver_type not in {'heun', 'midpoint'}: | |
raise ValueError('solver_type must be \'heun\' or \'midpoint\'') | |
seed = extra_args.get("seed", None) | |
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() | |
extra_args = {} if extra_args is None else extra_args | |
s_in = x.new_ones([x.shape[0]]) | |
old_denoised = None | |
h_last = None | |
h = None | |
# make upscale info | |
upscale_steps = [] | |
step = start_step-1 | |
while step < end_step-1: | |
upscale_steps.append(step) | |
step += upscale_n_step | |
height, width = x.shape[2:] | |
upscale_shapes = [(int(height * (((upscale_ratio-1) / i) + 1)), int(width * (((upscale_ratio-1) / i) + 1))) for i in reversed(range(1, len(upscale_steps)+1))] | |
upscale_info = {k: v for k, v in zip(upscale_steps, upscale_shapes)} | |
for i in trange(len(sigmas) - 1, disable=disable): | |
denoised = model(x, sigmas[i] * s_in, **extra_args) | |
if callback is not None: | |
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) | |
if sigmas[i + 1] == 0: | |
# Denoising step | |
x = denoised | |
else: | |
# DPM-Solver++(2M) SDE | |
t, s = -sigmas[i].log(), -sigmas[i + 1].log() | |
h = s - t | |
eta_h = eta * h | |
x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised | |
if old_denoised is not None: | |
r = h_last / h | |
if solver_type == 'heun': | |
x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised) | |
elif solver_type == 'midpoint': | |
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised) | |
if eta: | |
# Resize | |
if i in upscale_info: | |
x = torch.nn.functional.interpolate(x, size=upscale_info[i], mode='bicubic', align_corners=False) | |
denoised = None # 次ステップとサイズがあわないのでとりあえずNoneにしておく。 | |
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) | |
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise | |
old_denoised = denoised | |
h_last = h | |
return x | |
@torch.no_grad() | |
def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, eta=None, s_noise=None, upscale_ratio=2.0, start_step=5, end_step=15, upscale_n_step=3): | |
extra_args = {} if extra_args is None else extra_args | |
s_in = x.new_ones([x.shape[0]]) | |
# make upscale info | |
upscale_steps = [] | |
step = start_step-1 | |
while step < end_step-1: | |
upscale_steps.append(step) | |
step += upscale_n_step | |
height, width = x.shape[2:] | |
upscale_shapes = [(int(height * (((upscale_ratio-1) / i) + 1)), int(width * (((upscale_ratio-1) / i) + 1))) for i in reversed(range(1, len(upscale_steps)+1))] | |
upscale_info = {k: v for k, v in zip(upscale_steps, upscale_shapes)} | |
for i in trange(len(sigmas) - 1, disable=disable): | |
denoised = model(x, sigmas[i] * s_in, **extra_args) | |
if callback is not None: | |
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) | |
x = denoised | |
if sigmas[i + 1] > 0: | |
# Resize | |
if i in upscale_info: | |
x = torch.nn.functional.interpolate(x, size=upscale_info[i], mode='bicubic', align_corners=False) | |
noise_sampler = default_noise_sampler(x) | |
x += sigmas[i + 1] * noise_sampler(sigmas[i], sigmas[i + 1]) | |
return x | |
class GradualLatentSampler: | |
@classmethod | |
def INPUT_TYPES(s): | |
return {"required": | |
{ | |
"sampler_name": (["euler_ancestral", "dpmpp_2s_ancestral", "dpmpp_2m_sde", "lcm"], ), | |
"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step":0.01, "round": False}), | |
"s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step":0.01, "round": False}), | |
"upscale_ratio": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 16.0, "step":0.01, "round": False}), | |
"start_step": ("INT", {"default": 5, "min": 0, "max": 1000, "step": 1}), | |
"end_step": ("INT", {"default": 15, "min": 0, "max": 1000, "step": 1}), | |
"upscale_n_step": ("INT", {"default": 3, "min": 0, "max": 1000, "step": 1}), | |
} | |
} | |
RETURN_TYPES = ("SAMPLER",) | |
CATEGORY = "sampling/custom_sampling/samplers" | |
FUNCTION = "get_sampler" | |
def get_sampler(self, sampler_name, eta, s_noise, upscale_ratio, start_step, end_step, upscale_n_step): | |
if sampler_name == "euler_ancestral": | |
sample_function = sample_euler_ancestral | |
elif sampler_name == "dpmpp_2s_ancestral": | |
sample_function = sample_dpmpp_2s_ancestral | |
elif sampler_name == "dpmpp_2m_sde": | |
sample_function = sample_dpmpp_2m_sde | |
elif sampler_name == "lcm": | |
sample_function = sample_lcm | |
else: | |
raise ValueError("Unknown sampler name") | |
sampler = KSAMPLER(sample_function, {"eta":eta, "s_noise":s_noise, "upscale_ratio": upscale_ratio, "start_step": start_step, "end_step": end_step, "upscale_n_step": upscale_n_step}) | |
return (sampler, ) | |
NODE_CLASS_MAPPINGS = { | |
"GradualLatentSampler": GradualLatentSampler, | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
# Sampling | |
"GradualLatentSampler": "GradualLatentSampler", | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment