Skip to content

Instantly share code, notes, and snippets.

@laksjdjf
Last active November 30, 2023 23:27
Show Gist options
  • Save laksjdjf/cf15ae37e27d2f0f9b3d978e6d05ec31 to your computer and use it in GitHub Desktop.
Save laksjdjf/cf15ae37e27d2f0f9b3d978e6d05ec31 to your computer and use it in GitHub Desktop.
import comfy
from comfy.samplers import KSAMPLER
import torch
from comfy.k_diffusion.sampling import default_noise_sampler, get_ancestral_step, to_d, BrownianTreeNoiseSampler
from tqdm.auto import trange
@torch.no_grad()
def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, upscale_ratio=2.0, start_step=5, end_step=15, upscale_n_step=3):
"""Ancestral sampling with Euler method steps."""
extra_args = {} if extra_args is None else extra_args
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
# make upscale info
upscale_steps = []
step = start_step-1
while step < end_step-1:
upscale_steps.append(step)
step += upscale_n_step
height, width = x.shape[2:]
upscale_shapes = [(int(height * (((upscale_ratio-1) / i) + 1)), int(width * (((upscale_ratio-1) / i) + 1))) for i in reversed(range(1, len(upscale_steps)+1))]
upscale_info = {k: v for k, v in zip(upscale_steps, upscale_shapes)}
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
d = to_d(x, sigmas[i], denoised)
# Euler method
dt = sigma_down - sigmas[i]
x = x + d * dt
if sigmas[i + 1] > 0:
# Resize
if i in upscale_info:
x = torch.nn.functional.interpolate(x, size=upscale_info[i], mode='bicubic', align_corners=False)
noise_sampler = default_noise_sampler(x)
noise = noise_sampler(sigmas[i], sigmas[i + 1])
x = x + noise * sigma_up * s_noise
return x
@torch.no_grad()
def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, upscale_ratio=2.0, start_step=5, end_step=15, upscale_n_step=3):
"""Ancestral sampling with DPM-Solver++(2S) second-order steps."""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
sigma_fn = lambda t: t.neg().exp()
t_fn = lambda sigma: sigma.log().neg()
# make upscale info
upscale_steps = []
step = start_step-1
while step < end_step-1:
upscale_steps.append(step)
step += upscale_n_step
height, width = x.shape[2:]
upscale_shapes = [(int(height * (((upscale_ratio-1) / i) + 1)), int(width * (((upscale_ratio-1) / i) + 1))) for i in reversed(range(1, len(upscale_steps)+1))]
upscale_info = {k: v for k, v in zip(upscale_steps, upscale_shapes)}
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigma_down == 0:
# Euler method
d = to_d(x, sigmas[i], denoised)
dt = sigma_down - sigmas[i]
x = x + d * dt
else:
# DPM-Solver++(2S)
t, t_next = t_fn(sigmas[i]), t_fn(sigma_down)
r = 1 / 2
h = t_next - t
s = t + r * h
x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_2
# Noise addition
if sigmas[i + 1] > 0:
# Resize
if i in upscale_info:
x = torch.nn.functional.interpolate(x, size=upscale_info[i], mode='bicubic', align_corners=False)
noise_sampler = default_noise_sampler(x)
noise = noise_sampler(sigmas[i], sigmas[i + 1])
x = x + noise * sigma_up * s_noise
return x
@torch.no_grad()
def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint', upscale_ratio=2.0, start_step=5, end_step=15, upscale_n_step=3):
"""DPM-Solver++(2M) SDE."""
if solver_type not in {'heun', 'midpoint'}:
raise ValueError('solver_type must be \'heun\' or \'midpoint\'')
seed = extra_args.get("seed", None)
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
old_denoised = None
h_last = None
h = None
# make upscale info
upscale_steps = []
step = start_step-1
while step < end_step-1:
upscale_steps.append(step)
step += upscale_n_step
height, width = x.shape[2:]
upscale_shapes = [(int(height * (((upscale_ratio-1) / i) + 1)), int(width * (((upscale_ratio-1) / i) + 1))) for i in reversed(range(1, len(upscale_steps)+1))]
upscale_info = {k: v for k, v in zip(upscale_steps, upscale_shapes)}
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
# Denoising step
x = denoised
else:
# DPM-Solver++(2M) SDE
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
h = s - t
eta_h = eta * h
x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
if old_denoised is not None:
r = h_last / h
if solver_type == 'heun':
x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
elif solver_type == 'midpoint':
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
if eta:
# Resize
if i in upscale_info:
x = torch.nn.functional.interpolate(x, size=upscale_info[i], mode='bicubic', align_corners=False)
denoised = None # 次ステップとサイズがあわないのでとりあえずNoneにしておく。
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True)
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
old_denoised = denoised
h_last = h
return x
@torch.no_grad()
def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, eta=None, s_noise=None, upscale_ratio=2.0, start_step=5, end_step=15, upscale_n_step=3):
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
# make upscale info
upscale_steps = []
step = start_step-1
while step < end_step-1:
upscale_steps.append(step)
step += upscale_n_step
height, width = x.shape[2:]
upscale_shapes = [(int(height * (((upscale_ratio-1) / i) + 1)), int(width * (((upscale_ratio-1) / i) + 1))) for i in reversed(range(1, len(upscale_steps)+1))]
upscale_info = {k: v for k, v in zip(upscale_steps, upscale_shapes)}
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
x = denoised
if sigmas[i + 1] > 0:
# Resize
if i in upscale_info:
x = torch.nn.functional.interpolate(x, size=upscale_info[i], mode='bicubic', align_corners=False)
noise_sampler = default_noise_sampler(x)
x += sigmas[i + 1] * noise_sampler(sigmas[i], sigmas[i + 1])
return x
class GradualLatentSampler:
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"sampler_name": (["euler_ancestral", "dpmpp_2s_ancestral", "dpmpp_2m_sde", "lcm"], ),
"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step":0.01, "round": False}),
"s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step":0.01, "round": False}),
"upscale_ratio": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 16.0, "step":0.01, "round": False}),
"start_step": ("INT", {"default": 5, "min": 0, "max": 1000, "step": 1}),
"end_step": ("INT", {"default": 15, "min": 0, "max": 1000, "step": 1}),
"upscale_n_step": ("INT", {"default": 3, "min": 0, "max": 1000, "step": 1}),
}
}
RETURN_TYPES = ("SAMPLER",)
CATEGORY = "sampling/custom_sampling/samplers"
FUNCTION = "get_sampler"
def get_sampler(self, sampler_name, eta, s_noise, upscale_ratio, start_step, end_step, upscale_n_step):
if sampler_name == "euler_ancestral":
sample_function = sample_euler_ancestral
elif sampler_name == "dpmpp_2s_ancestral":
sample_function = sample_dpmpp_2s_ancestral
elif sampler_name == "dpmpp_2m_sde":
sample_function = sample_dpmpp_2m_sde
elif sampler_name == "lcm":
sample_function = sample_lcm
else:
raise ValueError("Unknown sampler name")
sampler = KSAMPLER(sample_function, {"eta":eta, "s_noise":s_noise, "upscale_ratio": upscale_ratio, "start_step": start_step, "end_step": end_step, "upscale_n_step": upscale_n_step})
return (sampler, )
NODE_CLASS_MAPPINGS = {
"GradualLatentSampler": GradualLatentSampler,
}
NODE_DISPLAY_NAME_MAPPINGS = {
# Sampling
"GradualLatentSampler": "GradualLatentSampler",
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment