Last active
March 28, 2022 17:18
-
-
Save lamont-granquist/dd0eda38330827e058ee9a46de3ff518 to your computer and use it in GitHub Desktop.
Rough cut MCPI ODE IVP Solver
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
% implementation from: | |
% - https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/ETD-TAMU-2010-08-8240/BAI-DISSERTATION.pdf | |
% - https://link.springer.com/article/10.1007/BF03321534 | |
function [xnew, iter] = MCPI(ode, xold, tmin, tmax, N, tol, varargin) | |
x0 = zeros(size(xold)); | |
x0(1,:) = xold(1,:) * 2 | |
tau = cos((0:N).*pi./N); | |
k1 = ( tmax + tmin ) / 2; | |
k2 = ( tmax - tmin ) / 2; | |
t = k2 * tau + k1; | |
% V | |
V = repmat(2/N,[N+1 1]); | |
V(1) = V(1)/2; | |
V(end) = V(end)/2; | |
V = diag(V) | |
% T | |
T = chebyshevT(repmat((0:N),N+1,1),repmat(tau', 1, N+1)) | |
% Cx | |
Cx = T; | |
Cx(:,1) = Cx(:,1)*0.5 | |
% R | |
R(1) = 1; | |
for f=1:N; R(f+1) = 1/(2*f); end | |
R = diag(R) | |
% S | |
S = diag(ones(1,N),-1) + diag(-1*ones(1,N),1); | |
S(1,1) = 1; | |
S(1,2) = -1/2; | |
% r is weirdly zero-indexed in Bai+Judkins | |
for r=2:N-1; S(1,r+1) = realpow(-1, r+1) * (1/(r-1)-1/(r+1)); end | |
S(1,N+1) = realpow(-1,N+1) * (1/N-1) | |
% Ca | |
Ca = R * S * T' * V | |
eold = 10 * tol; | |
iter = 0; | |
maxiter = 300; | |
while true | |
g = k2 * ode(t, xold, varargin{:}); | |
beta = Ca * g + x0; | |
xnew = Cx * beta; | |
enew = max(abs(xnew - xold), [], 'all'); | |
iter = iter + 1; | |
if ( enew < tol && eold < tol ) || iter >= maxiter | |
break | |
end | |
xold = xnew; | |
eold = enew; | |
end | |
xnew | |
iter | |
end |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
mu = 1.0; | |
indexes.r = 1:3; | |
indexes.v = 4:6; | |
N = 20; | |
r0 = [ 1 0 0 ]; | |
v0 = [ 0 1 0 ]; | |
x0 = repmat([ r0 v0 ], N+1, 1); | |
mcpi(@centralforce, x0, 0, 2*pi, N, 1e-8, indexes, mu); | |
function dxdt = centralforce(t, x, indexes, mu) | |
r = x(:, indexes.r) | |
rmag = vecnorm(r, 2, 2) | |
vdot = - mu ./ rmag.^3 .* r | |
dxdt = [ x(:, indexes.v) vdot ] | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment