-
-
Save lebedov/f09030b865c4cb142af1 to your computer and use it in GitHub Desktop.
#!/usr/bin/env python | |
""" | |
Retrieve intraday stock data from Google Finance. | |
""" | |
import csv | |
import datetime | |
import re | |
import pandas as pd | |
import requests | |
def get_google_finance_intraday(ticker, period=60, days=1): | |
""" | |
Retrieve intraday stock data from Google Finance. | |
Parameters | |
---------- | |
ticker : str | |
Company ticker symbol. | |
period : int | |
Interval between stock values in seconds. | |
days : int | |
Number of days of data to retrieve. | |
Returns | |
------- | |
df : pandas.DataFrame | |
DataFrame containing the opening price, high price, low price, | |
closing price, and volume. The index contains the times associated with | |
the retrieved price values. | |
""" | |
uri = 'http://www.google.com/finance/getprices' \ | |
'?i={period}&p={days}d&f=d,o,h,l,c,v&df=cpct&q={ticker}'.format(ticker=ticker, | |
period=period, | |
days=days) | |
page = requests.get(uri) | |
reader = csv.reader(page.content.splitlines()) | |
columns = ['Open', 'High', 'Low', 'Close', 'Volume'] | |
rows = [] | |
times = [] | |
for row in reader: | |
if re.match('^[a\d]', row[0]): | |
if row[0].startswith('a'): | |
start = datetime.datetime.fromtimestamp(int(row[0][1:])) | |
times.append(start) | |
else: | |
times.append(start+datetime.timedelta(seconds=period*int(row[0]))) | |
rows.append(map(float, row[1:])) | |
if len(rows): | |
return pd.DataFrame(rows, index=pd.DatetimeIndex(times, name='Date'), | |
columns=columns) | |
else: | |
return pd.DataFrame(rows, index=pd.DatetimeIndex(times, name='Date')) |
import requests
import pandas as pd
import arrow
import datetime
def get_quote_data(symbol='SBIN.NS', data_range='1d', data_interval='1m'):
res = requests.get('https://query1.finance.yahoo.com/v8/finance/chart/{symbol}?range={data_range}&interval={data_interval}'.format(**locals()))
data = res.json()
body = data['chart']['result'][0]
dt = datetime.datetime
dt = pd.Series(map(lambda x: arrow.get(x).to('Asia/Calcutta').datetime.replace(tzinfo=None), body['timestamp']), name='Datetime')
df = pd.DataFrame(body['indicators']['quote'][0], index=dt)
dg = pd.DataFrame(body['timestamp'])
df = df.loc[:, ('open', 'high', 'low', 'close', 'volume')]
df.dropna(inplace=True) #removing NaN rows
df.columns = ['OPEN', 'HIGH','LOW','CLOSE','VOLUME'] #Renaming columns in pandas
return df
data = get_quote_data('KPIT.NS', '1d', '1m')
print(data)
Does anyone know why yahoo does not provide 30 minute data? I know that 1, 15, 60 work fine but not 30m.
how do you get 1, 15, 60 minute data from yahoo?
using the script posted just before my question.
The code above by kongaraman is wonderful. thanks for posting.
Thanks ynagendra
I noticed that yahoo data is not constant. For 1 minute, i observed that data gives differently for the same time period.
When i run the above python code, it should be the same for data, as long as i run any number of times.
Can someone have idea on this? Also this data is not exactly matching to actual exchange data.
I am not sure, why there is a difference. If anybody have idea then please post your comments.
Observed that there are many empty values while extracting data.
So i used df.dropna(inplace=True) #removing NaN rows
Infact the above line is not needed. We need to get good quality data, which is missing from above link.
import requests import pandas as pd import arrow import datetime def get_quote_data(symbol='SBIN.NS', data_range='1d', data_interval='1m'): res = requests.get('https://query1.finance.yahoo.com/v8/finance/chart/{symbol}?range={data_range}&interval={data_interval}'.format(**locals())) data = res.json() body = data['chart']['result'][0] dt = datetime.datetime dt = pd.Series(map(lambda x: arrow.get(x).to('Asia/Calcutta').datetime.replace(tzinfo=None), body['timestamp']), name='Datetime') df = pd.DataFrame(body['indicators']['quote'][0], index=dt) dg = pd.DataFrame(body['timestamp']) df = df.loc[:, ('open', 'high', 'low', 'close', 'volume')] df.dropna(inplace=True) #removing NaN rows df.columns = ['OPEN', 'HIGH','LOW','CLOSE','VOLUME'] #Renaming columns in pandas return df data = get_quote_data('KPIT.NS', '1d', '1m') print(data)
Hi,
I am getting error ModuleNotFoundError: No module named 'arrow'. I have installed arrow module, still it throws this error
Thanks for great ideas.
I tried to apply kongaraman function on a list of stock tickers. when i pplied a for loop, i got the follwing error:
TypeError: 'NoneType' object has no attribute 'getitem'
HI All,
The yahoo finance API seems to be stuck at March 28th 2019 and not returning any data post that. I am trying to import data for the NIFTYBANK NSE Index and also tried for other stocks as well. Are others also facing the same problem and can anyone suggest some alternatives for 1minute Data Provider for NSE Stocks.
Thanks,
Rajesh
Hi.
Was anyone able to get hourly information on stock prices, either individual or by S&P?
seems to have stopped working, now isnt returning anything - could be me of course
URL is http://www.google.com/finance/getprices?i=60&p=1d&f=d,o,h,l,c,v&df=cpct&q=VOD&x=LON
Empty DataFrame
Columns: []
Index: []
donewhen I run that URL in the browser, it thinks I'm a bot and shuts me down, any way around that please ?
ta
that url failed for me as well.
We're sorry...
... but your computer or network may be sending automated queries. To protect our users, we can't process your request right now.
import requests import pandas as pd import arrow import datetime def get_quote_data(symbol='SBIN.NS', data_range='1d', data_interval='1m'): res = requests.get('https://query1.finance.yahoo.com/v8/finance/chart/{symbol}?range={data_range}&interval={data_interval}'.format(**locals())) data = res.json() body = data['chart']['result'][0] dt = datetime.datetime dt = pd.Series(map(lambda x: arrow.get(x).to('Asia/Calcutta').datetime.replace(tzinfo=None), body['timestamp']), name='Datetime') df = pd.DataFrame(body['indicators']['quote'][0], index=dt) dg = pd.DataFrame(body['timestamp']) df = df.loc[:, ('open', 'high', 'low', 'close', 'volume')] df.dropna(inplace=True) #removing NaN rows df.columns = ['OPEN', 'HIGH','LOW','CLOSE','VOLUME'] #Renaming columns in pandas return df data = get_quote_data('KPIT.NS', '1d', '1m') print(data)
Works great, but is there a way to save this data to a CSV file?
import requests import pandas as pd import arrow import datetime def get_quote_data(symbol='SBIN.NS', data_range='1d', data_interval='1m'): res = requests.get('https://query1.finance.yahoo.com/v8/finance/chart/{symbol}?range={data_range}&interval={data_interval}'.format(**locals())) data = res.json() body = data['chart']['result'][0] dt = datetime.datetime dt = pd.Series(map(lambda x: arrow.get(x).to('Asia/Calcutta').datetime.replace(tzinfo=None), body['timestamp']), name='Datetime') df = pd.DataFrame(body['indicators']['quote'][0], index=dt) dg = pd.DataFrame(body['timestamp']) df = df.loc[:, ('open', 'high', 'low', 'close', 'volume')] df.dropna(inplace=True) #removing NaN rows df.columns = ['OPEN', 'HIGH','LOW','CLOSE','VOLUME'] #Renaming columns in pandas return df data = get_quote_data('KPIT.NS', '1d', '1m') print(data)
Works great, but is there a way to save this data to a CSV file?
data.to_csv('output.csv')
To sum up this string..
Step 1: Install python: https://www.python.org/downloads/
Step 2: Install panda: pip install panda
Step 3: Save this code:
'
import requests
import pandas as pd
import arrow
import datetime
def get_quote_data(symbol='SBIN.NS', data_range='1d', data_interval='1m'):
res = requests.get('https://query1.finance.yahoo.com/v8/finance/chart/{symbol}?range={data_range}&interval={data_interval}'.format(**locals()))
data = res.json()
body = data['chart']['result'][0]
dt = datetime.datetime
dt = pd.Series(map(lambda x: arrow.get(x).to('Asia/Calcutta').datetime.replace(tzinfo=None), body['timestamp']), name='Datetime')
df = pd.DataFrame(body['indicators']['quote'][0], index=dt)
dg = pd.DataFrame(body['timestamp'])
return df.loc[:, ('open', 'high', 'low', 'close', 'volume')]
data = get_quote_data('SBIN.NS', '5d', '1m')
data.dropna(inplace=True) #removing NaN rows
print(data)
data.to_csv('output.csv')
'
Step 4: Drag the saved python file to CMD and an output CSV will be saved.
what is the symbol for NIFTY50 data
what is the symbol for NIFTY50 data
Yahoo finance symbol for nifty 50 = '^NSEI'
import requests
import pandas as pd
import arrow
import datetime
def get_quote_data(symbol , data_range='1d', data_interval='1m'):
res = requests.get('https://query1.finance.yahoo.com/v8/finance/chart/{symbol}?range={data_range}&interval={data_interval}'.format(**locals()))
data = res.json()
body = data['chart']['result'][0]
dt = datetime.datetime
dt = pd.Series(map(lambda x: arrow.get(x).to('Asia/Calcutta').datetime.replace(tzinfo=None), body['timestamp']), name='Datetime')
df = pd.DataFrame(body['indicators']['quote'][0], index=dt)
dg = pd.DataFrame(body['timestamp'])
df = df.loc[:, ('open', 'high', 'low', 'close', 'volume')]
df.dropna(inplace=True)
df.columns = ['OPEN', 'HIGH','LOW','CLOSE','VOLUME']
return df
for s in symbol:
data = get_quote_data(s,'1d','1m')
data.to_csv(s.strip(".NS")+'.csv')
this is for multiple stock symbols
I am able to change to Indian standard time by using 'Asia/Calcutta'. Referred this from link https://raw.githubusercontent.com/SpiRaiL/timezone/master/timezone.py
Modified code which now works for IST is: