You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Chi-like syntactic sugar layer on top of stdlib http.ServeMux
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Grokking the coding interview equivalent leetcode problems
GROKKING NOTES
I liked the way Grokking the coding interview organized problems into learnable patterns. However, the course is expensive and the majority of the time the problems are copy-pasted from leetcode. As the explanations on leetcode are usually just as good, the course really boils down to being a glorified curated list of leetcode problems.
So below I made a list of leetcode problems that are as close to grokking problems as possible.
(UPDATE (22/3/2019): Added some corrections provided by the original author.)
Writing your own OS to run on a handmade CPU is a pretty ambitious project, but
I've managed to get it working pretty well so I'm going to write some notes
about how I did it.
Exclude WSL installations from Windows Defender realtime protection
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
I was talking to a coworker recently about general techniques that almost always form the core of any effort to write very fast, down-to-the-metal hot path code on the JVM, and they pointed out that there really isn't a particularly good place to go for this information. It occurred to me that, really, I had more or less picked up all of it by word of mouth and experience, and there just aren't any good reference sources on the topic. So… here's my word of mouth.
This is by no means a comprehensive gist. It's also important to understand that the techniques that I outline in here are not 100% absolute either. Performance on the JVM is an incredibly complicated subject, and while there are rules that almost always hold true, the "almost" remains very salient. Also, for many or even most applications, there will be other techniques that I'm not mentioning which will have a greater impact. JMH, Java Flight Recorder, and a good profiler are your very best friend! Mea
This is my attempt to give Scala newcomers a quick-and-easy rundown to the prerequisite steps they need to a) try Scala, and b) get a standard project up and running on their machine. I'm not going to talk about the language at all; there are plenty of better resources a google search away. This is just focused on the prerequisite tooling and machine setup. I will not be assuming you have any background in JVM languages. So if you're coming from Python, Ruby, JavaScript, Haskell, or anywhere… I hope to present the information you need without assuming anything.
Disclaimer It has been over a decade since I was new to Scala, and when I was new to Scala, I was coming from a Java and Ruby background. This has probably caused me to unknowingly make some assumptions. Please feel free to call me out in comments/tweets!
One assumption I'm knowingly making is that you're on a Unix-like platform. Sorry, Windows users.
A function is a mapping from one set, called a domain, to another set, called the codomain. A function associates every element in the domain with exactly one element in the codomain. In Scala, both domain and codomain are types.