Created
January 1, 2021 04:44
-
-
Save lordpretzel/55bfee9a0655ea8d12b0705411ba68be to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Priority Queues\n", | |
"\n", | |
"## Agenda\n", | |
"\n", | |
"1. Motives\n", | |
"2. Naive implementation\n", | |
"2. Heaps\n", | |
" - Mechanics\n", | |
" - Implementation\n", | |
" - Run-time Analysis\n", | |
"3. Heapsort" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## 1. Motives" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## 2. Naive implementation" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"class PriorityQueue:\n", | |
" def __init__(self):\n", | |
" self.data = []\n", | |
" \n", | |
" def add(self, x):\n", | |
" pass\n", | |
" \n", | |
" def max(self):\n", | |
" pass\n", | |
"\n", | |
" def pop_max(self):\n", | |
" pass\n", | |
" \n", | |
" def __bool__(self):\n", | |
" return len(self.data) > 0\n", | |
"\n", | |
" def __len__(self):\n", | |
" return len(self.data)\n", | |
"\n", | |
" def __repr__(self):\n", | |
" return repr(self.data)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"pq = PriorityQueue()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import random\n", | |
"for _ in range(10):\n", | |
" pq.add(random.randrange(100))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"pq" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"while pq:\n", | |
" print(pq.pop_max())" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## 3. Heaps" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Mechanics" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Implementation" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"class Heap:\n", | |
" def __init__(self):\n", | |
" self.data = []\n", | |
"\n", | |
" def add(self, x):\n", | |
" pass\n", | |
" \n", | |
" def max(self):\n", | |
" pass\n", | |
"\n", | |
" def pop_max(self):\n", | |
" pass\n", | |
" \n", | |
" def __bool__(self):\n", | |
" return len(self.data) > 0\n", | |
"\n", | |
" def __len__(self):\n", | |
" return len(self.data)\n", | |
"\n", | |
" def __repr__(self):\n", | |
" return repr(self.data)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"h = Heap()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import random\n", | |
"for _ in range(10):\n", | |
" h.add(random.randrange(100))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"h" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"while h:\n", | |
" print(h.pop_max())" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Run-time Analysis" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## 4. Heapsort" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def heapsort(iterable):\n", | |
" heap = Heap()\n", | |
" pass" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"import random\n", | |
"\n", | |
"def pairs(iterable):\n", | |
" it = iter(iterable)\n", | |
" a = next(it)\n", | |
" while True:\n", | |
" b = next(it)\n", | |
" yield a,b\n", | |
" a = b\n", | |
"\n", | |
"lst = heapsort(random.random() for _ in range(1000))\n", | |
"all((a <= b) for a, b in pairs(lst))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import timeit\n", | |
"def time_heapsort(n):\n", | |
" return timeit.timeit('heapsort(rlst)',\n", | |
" 'from __main__ import heapsort; '\n", | |
" 'import random; '\n", | |
" 'rlst = (random.random() for _ in range({}))'.format(n),\n", | |
" number=1000)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"%matplotlib inline\n", | |
"import matplotlib.pyplot as plt\n", | |
"import numpy as np\n", | |
"\n", | |
"ns = np.linspace(100, 10000, 50, dtype=np.int_)\n", | |
"plt.plot(ns, [time_heapsort(n) for n in ns], 'r+')\n", | |
"plt.show()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"%matplotlib inline\n", | |
"import matplotlib.pyplot as plt\n", | |
"import numpy as np\n", | |
"\n", | |
"ns = np.linspace(100, 10000, 50, dtype=np.int_)\n", | |
"plt.plot(ns, [time_heapsort(n) for n in ns], 'r+')\n", | |
"plt.plot(ns, ns*np.log2(ns)*0.01/10000, 'b') # O(n log n) plot\n", | |
"plt.show()" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.4.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment