Last active
January 7, 2021 16:41
-
-
Save lucidrains/0d57316e8729ec794f3fe100454d636a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# link to package https://github.com/lucidrains/slot-attention | |
import torch | |
from torch import nn | |
class Residual(nn.Module): | |
def __init__(self, fn): | |
super().__init__() | |
self.fn = fn | |
def forward(self, x): | |
return x + self.fn(x) | |
class PreNorm(nn.Module): | |
def __init__(self, dim, fn): | |
super().__init__() | |
self.fn = fn | |
self.norm = nn.LayerNorm(dim) | |
def forward(self, x): | |
x = self.norm(x) | |
return self.fn(x) | |
class SlotAttention(nn.Module): | |
def __init__(self, num_slots, dim, iters = 3, eps = 1e-8, mlp_hidden_size = 128): | |
super().__init__() | |
self.num_slots = num_slots | |
self.iters = iters | |
self.eps = eps | |
self.scale = dim ** -0.5 | |
self.slots_mu = nn.Parameter(torch.randn(1, 1, dim)) | |
self.slots_sigma = nn.Parameter(torch.randn(1, 1, dim)) | |
self.to_q = nn.Linear(dim, dim, bias = False) | |
self.to_k = nn.Linear(dim, dim, bias = False) | |
self.to_v = nn.Linear(dim, dim, bias = False) | |
self.gru = nn.GRU(dim, dim) | |
self.mlp = Residual(PreNorm(dim, nn.Sequential( | |
nn.Linear(dim, mlp_hidden_size), | |
nn.ReLU(inplace = True), | |
nn.Linear(mlp_hidden_size, dim) | |
))) | |
self.norm_input = nn.LayerNorm(dim) | |
self.norm_slots = nn.LayerNorm(dim) | |
def forward(self, inputs): | |
b, n, d, n_s = *inputs.shape, self.num_slots | |
mu = self.slots_mu.expand(b, n_s, -1) | |
sigma = self.slots_sigma.expand(b, n_s, -1) | |
slots = torch.normal(mu, sigma) | |
slots_shape = slots.shape | |
inputs = self.norm_input(inputs) | |
k, v = self.to_k(inputs), self.to_v(inputs) | |
for _ in range(self.iters): | |
slots_prev = slots | |
slots = self.norm_slots(slots) | |
q = self.to_q(slots) | |
dots = torch.einsum('bid,bjd->bij', q, k) * self.scale | |
attn = dots.softmax(dim=1) + self.eps | |
attn = attn / attn.sum(dim=-1, keepdim=True) | |
updates = torch.einsum('bjd,bij->bid', v, attn) | |
slots, _ = self.gru( | |
updates.reshape(1, -1, d), | |
slots_prev.reshape(1, -1, d) | |
) | |
slots = slots.reshape(b, -1, d) | |
slots = self.mlp(slots) | |
return slots | |
slot_attn = SlotAttention(num_slots=5, dim=512) | |
inputs = torch.randn(1, 1024, 512) | |
slot_attn(inputs) |
Another comment: In line 60, you normalize/divide the attention coefficients by their mean, but you should instead divide them by their sum (see Eq. 2 in the paper).
We also use a smaller eps of 1e-8 by default (see Table 11a).
all addressed! (i think)
Thanks!
Maybe I haben overlooked it, but how is this wonderful work licensed?
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thank you for sharing your re-implementation! Two slight inconsistencies w.r.t. our paper that caught my eye: (1) we use ReLU (and different hidden layer sizes) in the feedforward network (mlp) instead of LeakyReLU, and (2) we initialize the slots at random for every individual example, but we learn the parameters of the initialization distribution. Initial values of the slots are taken as i.i.d. samples from a Gaussian distribution.