Last active
January 7, 2021 16:41
-
-
Save lucidrains/0d57316e8729ec794f3fe100454d636a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# link to package https://github.com/lucidrains/slot-attention | |
import torch | |
from torch import nn | |
class Residual(nn.Module): | |
def __init__(self, fn): | |
super().__init__() | |
self.fn = fn | |
def forward(self, x): | |
return x + self.fn(x) | |
class PreNorm(nn.Module): | |
def __init__(self, dim, fn): | |
super().__init__() | |
self.fn = fn | |
self.norm = nn.LayerNorm(dim) | |
def forward(self, x): | |
x = self.norm(x) | |
return self.fn(x) | |
class SlotAttention(nn.Module): | |
def __init__(self, num_slots, dim, iters = 3, eps = 1e-8, mlp_hidden_size = 128): | |
super().__init__() | |
self.num_slots = num_slots | |
self.iters = iters | |
self.eps = eps | |
self.scale = dim ** -0.5 | |
self.slots_mu = nn.Parameter(torch.randn(1, 1, dim)) | |
self.slots_sigma = nn.Parameter(torch.randn(1, 1, dim)) | |
self.to_q = nn.Linear(dim, dim, bias = False) | |
self.to_k = nn.Linear(dim, dim, bias = False) | |
self.to_v = nn.Linear(dim, dim, bias = False) | |
self.gru = nn.GRU(dim, dim) | |
self.mlp = Residual(PreNorm(dim, nn.Sequential( | |
nn.Linear(dim, mlp_hidden_size), | |
nn.ReLU(inplace = True), | |
nn.Linear(mlp_hidden_size, dim) | |
))) | |
self.norm_input = nn.LayerNorm(dim) | |
self.norm_slots = nn.LayerNorm(dim) | |
def forward(self, inputs): | |
b, n, d, n_s = *inputs.shape, self.num_slots | |
mu = self.slots_mu.expand(b, n_s, -1) | |
sigma = self.slots_sigma.expand(b, n_s, -1) | |
slots = torch.normal(mu, sigma) | |
slots_shape = slots.shape | |
inputs = self.norm_input(inputs) | |
k, v = self.to_k(inputs), self.to_v(inputs) | |
for _ in range(self.iters): | |
slots_prev = slots | |
slots = self.norm_slots(slots) | |
q = self.to_q(slots) | |
dots = torch.einsum('bid,bjd->bij', q, k) * self.scale | |
attn = dots.softmax(dim=1) + self.eps | |
attn = attn / attn.sum(dim=-1, keepdim=True) | |
updates = torch.einsum('bjd,bij->bid', v, attn) | |
slots, _ = self.gru( | |
updates.reshape(1, -1, d), | |
slots_prev.reshape(1, -1, d) | |
) | |
slots = slots.reshape(b, -1, d) | |
slots = self.mlp(slots) | |
return slots | |
slot_attn = SlotAttention(num_slots=5, dim=512) | |
inputs = torch.randn(1, 1024, 512) | |
slot_attn(inputs) |
all addressed! (i think)
Thanks!
Maybe I haben overlooked it, but how is this wonderful work licensed?
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
We also use a smaller eps of 1e-8 by default (see Table 11a).