For OSX, tested on my computer on a monday. YMMV. I started without any node/etc installed.
I never got NVM to work for node versioning, so I defaulted to just using brew node:
brew install node
And then install yarn and lerna globally:
CUDA_PATH ?= /usr/local/cuda | |
.PHONY: clean | |
vadd.so: vadd.o | |
nvcc -shared $^ -o $@ -lcuda | |
vadd.o: vadd.cu | |
nvcc -I $(CUDA_PATH)/include -I$(CUDA_PATH)/samples/common/inc -arch=sm_70 --compiler-options '-fPIC' $^ -c $@ |
/** | |
BasicHTTPClient.ino | |
Created on: 24.05.2015 | |
*/ | |
#include <Arduino.h> | |
#include <ESP8266WiFi.h> |
#!/usr/bin/env python | |
import numpy as np | |
''' | |
Notes: | |
- Tensile strength of 7x19 1/4" galvanized steel wire rope ~ 7000 lbs | |
''' |
#!/usr/bin/env python | |
import numpy as np | |
from collections import OrderedDict | |
from scipy.optimize import LinearConstraint, minimize, BFGS | |
def normlen(v): | |
''' length of norm of a vector ''' | |
return np.sqrt(np.sum(np.square(v))) |
#!/usr/bin/env python | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from scipy.optimize import minimize | |
''' | |
Parameterize a solution space so all numbers are valid: | |
Solver coordinates are given as arctanh(radius), theta | |
Then minimize the inverse average distance (to maximize average distance). |
#!/usr/bin/env python | |
from itertools import product | |
PROB_MORNING_RAIN = .5 | |
PROB_EVENING_RAIN = .4 | |
# Enumerate all possible cases, and sum the probability of getting rained on | |
total_probability = 0 # Total probability of getting rained on |
#!/usr/bin/env python | |
import os | |
import mujoco_py | |
import numpy as np | |
PATH_TO_HUMANOID_XML = os.path.expanduser('~/.mujoco/mjpro150/model/humanoid.xml') | |
# Load the model and make a simulator | |
model = mujoco_py.load_model_from_path(PATH_TO_HUMANOID_XML) |
FROM ubuntu:18.04 | |
# Install python and utils | |
RUN apt-get update && apt-get install -y python3-pip curl unzip \ | |
libosmesa-dev libglew-dev patchelf libglfw3-dev | |
# Download mujoco | |
RUN curl https://www.roboti.us/download/mjpro150_linux.zip --output /tmp/mujoco.zip && \ | |
mkdir -p /root/.mujoco && \ | |
unzip /tmp/mujoco.zip -d /root/.mujoco && \ |
#!/usr/bin/env python | |
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software |