Created
May 10, 2018 18:04
-
-
Save machinaut/2ac050eeda1b8b5fc7ea8a1b34e0a643 to your computer and use it in GitHub Desktop.
MeanTeacher in a custom TF estimator
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""An Example of a custom Estimator for the Iris dataset.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import argparse | |
import tensorflow as tf | |
import iris_data | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--batch_size', default=100, type=int, help='batch size') | |
parser.add_argument('--train_steps', default=1000, type=int, | |
help='number of training steps') | |
def my_net(inputs, params, ema=None, scope='net'): | |
''' build network, optionally get exponential moving average of params ''' | |
if ema is None: | |
reuse = tf.AUTO_REUSE | |
getter = None | |
else: | |
reuse = True | |
def getter(getter, name, *args, **kwargs): # noqa | |
var = getter(name, *args, **kwargs) | |
ema_var = ema.average(var) | |
return ema_var if ema_var else var | |
with tf.variable_scope(scope, reuse=reuse, custom_getter=getter): | |
net = tf.identity(inputs) | |
for units in params['hidden_units']: | |
net = tf.layers.dense(net, units=units, activation=tf.nn.relu) | |
logits = tf.layers.dense(net, params['n_classes'], activation=None) | |
return logits | |
def my_model(features, labels, mode, params): | |
"""DNN with three hidden layers, and dropout of 0.1 probability.""" | |
# Create three fully connected layers each layer having a dropout | |
# probability of 0.1. | |
inputs = tf.feature_column.input_layer(features, params['feature_columns']) | |
logits = my_net(inputs, params) | |
# exponential moving average | |
with tf.variable_scope('ema'): | |
ema = tf.train.ExponentialMovingAverage(decay=0.999) | |
ema_op = ema.apply(tf.trainable_variables()) | |
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, ema_op) | |
teacher = tf.stop_gradient(my_net(inputs, params, ema=ema)) | |
# Compute predictions. | |
predicted_classes = tf.argmax(logits, 1) | |
if mode == tf.estimator.ModeKeys.PREDICT: | |
predictions = { | |
'class_ids': predicted_classes[:, tf.newaxis], | |
'probabilities': tf.nn.softmax(logits), | |
'logits': logits, | |
'teacher': teacher, | |
} | |
return tf.estimator.EstimatorSpec(mode, predictions=predictions) | |
# Compute loss. | |
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits) | |
loss += tf.losses.mean_squared_error(teacher, logits) | |
# Compute evaluation metrics. | |
accuracy = tf.metrics.accuracy(labels=labels, | |
predictions=predicted_classes, | |
name='acc_op') | |
metrics = {'accuracy': accuracy} | |
tf.summary.scalar('accuracy', accuracy[1]) | |
if mode == tf.estimator.ModeKeys.EVAL: | |
return tf.estimator.EstimatorSpec( | |
mode, loss=loss, eval_metric_ops=metrics) | |
# Create training op. | |
assert mode == tf.estimator.ModeKeys.TRAIN | |
optimizer = tf.train.AdagradOptimizer(learning_rate=0.1) | |
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)): | |
train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step()) | |
return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op) | |
def main(argv): | |
args = parser.parse_args(argv[1:]) | |
# Fetch the data | |
(train_x, train_y), (test_x, test_y) = iris_data.load_data() | |
# Feature columns describe how to use the input. | |
my_feature_columns = [] | |
for key in train_x.keys(): | |
my_feature_columns.append(tf.feature_column.numeric_column(key=key)) | |
# Build 2 hidden layer DNN with 10, 10 units respectively. | |
classifier = tf.estimator.Estimator( | |
model_fn=my_model, | |
params={ | |
'feature_columns': my_feature_columns, | |
# Two hidden layers of 10 nodes each. | |
'hidden_units': [10, 10], | |
# The model must choose between 3 classes. | |
'n_classes': 3, | |
}) | |
# Train the Model. | |
classifier.train( | |
input_fn=lambda:iris_data.train_input_fn(train_x, train_y, args.batch_size), | |
steps=args.train_steps) | |
# Evaluate the model. | |
eval_result = classifier.evaluate( | |
input_fn=lambda:iris_data.eval_input_fn(test_x, test_y, args.batch_size)) | |
print('\nTest set accuracy: {accuracy:0.3f}\n'.format(**eval_result)) | |
# Generate predictions from the model | |
expected = ['Setosa', 'Versicolor', 'Virginica'] | |
predict_x = { | |
'SepalLength': [5.1, 5.9, 6.9], | |
'SepalWidth': [3.3, 3.0, 3.1], | |
'PetalLength': [1.7, 4.2, 5.4], | |
'PetalWidth': [0.5, 1.5, 2.1], | |
} | |
predictions = classifier.predict( | |
input_fn=lambda:iris_data.eval_input_fn(predict_x, | |
labels=None, | |
batch_size=args.batch_size)) | |
for pred_dict, expec in zip(predictions, expected): | |
template = ('\nPrediction is "{}" ({:.1f}%), expected "{}"') | |
class_id = pred_dict['class_ids'][0] | |
probability = pred_dict['probabilities'][class_id] | |
print(template.format(iris_data.SPECIES[class_id], | |
100 * probability, expec)) | |
if __name__ == '__main__': | |
tf.logging.set_verbosity(tf.logging.INFO) | |
tf.app.run(main) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment