Skip to content

Instantly share code, notes, and snippets.

@machinaut
Created May 10, 2018 18:04
Show Gist options
  • Save machinaut/2ac050eeda1b8b5fc7ea8a1b34e0a643 to your computer and use it in GitHub Desktop.
Save machinaut/2ac050eeda1b8b5fc7ea8a1b34e0a643 to your computer and use it in GitHub Desktop.
MeanTeacher in a custom TF estimator
#!/usr/bin/env python
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""An Example of a custom Estimator for the Iris dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import tensorflow as tf
import iris_data
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', default=100, type=int, help='batch size')
parser.add_argument('--train_steps', default=1000, type=int,
help='number of training steps')
def my_net(inputs, params, ema=None, scope='net'):
''' build network, optionally get exponential moving average of params '''
if ema is None:
reuse = tf.AUTO_REUSE
getter = None
else:
reuse = True
def getter(getter, name, *args, **kwargs): # noqa
var = getter(name, *args, **kwargs)
ema_var = ema.average(var)
return ema_var if ema_var else var
with tf.variable_scope(scope, reuse=reuse, custom_getter=getter):
net = tf.identity(inputs)
for units in params['hidden_units']:
net = tf.layers.dense(net, units=units, activation=tf.nn.relu)
logits = tf.layers.dense(net, params['n_classes'], activation=None)
return logits
def my_model(features, labels, mode, params):
"""DNN with three hidden layers, and dropout of 0.1 probability."""
# Create three fully connected layers each layer having a dropout
# probability of 0.1.
inputs = tf.feature_column.input_layer(features, params['feature_columns'])
logits = my_net(inputs, params)
# exponential moving average
with tf.variable_scope('ema'):
ema = tf.train.ExponentialMovingAverage(decay=0.999)
ema_op = ema.apply(tf.trainable_variables())
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, ema_op)
teacher = tf.stop_gradient(my_net(inputs, params, ema=ema))
# Compute predictions.
predicted_classes = tf.argmax(logits, 1)
if mode == tf.estimator.ModeKeys.PREDICT:
predictions = {
'class_ids': predicted_classes[:, tf.newaxis],
'probabilities': tf.nn.softmax(logits),
'logits': logits,
'teacher': teacher,
}
return tf.estimator.EstimatorSpec(mode, predictions=predictions)
# Compute loss.
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
loss += tf.losses.mean_squared_error(teacher, logits)
# Compute evaluation metrics.
accuracy = tf.metrics.accuracy(labels=labels,
predictions=predicted_classes,
name='acc_op')
metrics = {'accuracy': accuracy}
tf.summary.scalar('accuracy', accuracy[1])
if mode == tf.estimator.ModeKeys.EVAL:
return tf.estimator.EstimatorSpec(
mode, loss=loss, eval_metric_ops=metrics)
# Create training op.
assert mode == tf.estimator.ModeKeys.TRAIN
optimizer = tf.train.AdagradOptimizer(learning_rate=0.1)
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
def main(argv):
args = parser.parse_args(argv[1:])
# Fetch the data
(train_x, train_y), (test_x, test_y) = iris_data.load_data()
# Feature columns describe how to use the input.
my_feature_columns = []
for key in train_x.keys():
my_feature_columns.append(tf.feature_column.numeric_column(key=key))
# Build 2 hidden layer DNN with 10, 10 units respectively.
classifier = tf.estimator.Estimator(
model_fn=my_model,
params={
'feature_columns': my_feature_columns,
# Two hidden layers of 10 nodes each.
'hidden_units': [10, 10],
# The model must choose between 3 classes.
'n_classes': 3,
})
# Train the Model.
classifier.train(
input_fn=lambda:iris_data.train_input_fn(train_x, train_y, args.batch_size),
steps=args.train_steps)
# Evaluate the model.
eval_result = classifier.evaluate(
input_fn=lambda:iris_data.eval_input_fn(test_x, test_y, args.batch_size))
print('\nTest set accuracy: {accuracy:0.3f}\n'.format(**eval_result))
# Generate predictions from the model
expected = ['Setosa', 'Versicolor', 'Virginica']
predict_x = {
'SepalLength': [5.1, 5.9, 6.9],
'SepalWidth': [3.3, 3.0, 3.1],
'PetalLength': [1.7, 4.2, 5.4],
'PetalWidth': [0.5, 1.5, 2.1],
}
predictions = classifier.predict(
input_fn=lambda:iris_data.eval_input_fn(predict_x,
labels=None,
batch_size=args.batch_size))
for pred_dict, expec in zip(predictions, expected):
template = ('\nPrediction is "{}" ({:.1f}%), expected "{}"')
class_id = pred_dict['class_ids'][0]
probability = pred_dict['probabilities'][class_id]
print(template.format(iris_data.SPECIES[class_id],
100 * probability, expec))
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run(main)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment