-
-
Save markusrenepae/cae604d4c12493a55966b47e1d8bc65b to your computer and use it in GitHub Desktop.
import pandas as pd | |
import numpy as np | |
import datetime as dt | |
import math | |
import warnings | |
warnings.filterwarnings("ignore") | |
prices = pd.read_csv("adjclose.csv", index_col="Date", parse_dates=True) | |
volumechanges = pd.read_csv("volume.csv", index_col="Date", parse_dates=True).pct_change()*100 | |
today = dt.date(2000, 1, 15) | |
simend = dt.date(2019, 12, 31) | |
tickers = [] | |
transactionid = 0 | |
money = 1000000 | |
portfolio = {} | |
activelog = [] | |
transactionlog = [] | |
def getprice(date, ticker): | |
global prices | |
return prices.loc[date][ticker] | |
def transaction(id, ticker, amount, price, type, info): | |
global transactionid | |
if type == "buy": | |
exp_date = today + dt.timedelta(days=14) | |
transactionid += 1 | |
else: | |
exp_date = today | |
if type == "sell": | |
data = {"id": id, "ticker": ticker, "amount": amount, "price": price, "date": today, "type": type, | |
"exp_date": exp_date, "info": info} | |
elif type == "buy": | |
data = {"id": transactionid, "ticker": ticker, "amount": amount, "price": price, "date": today, "type": type, | |
"exp_date": exp_date, "info": info} | |
activelog.append(data) | |
transactionlog.append(data) | |
def buy(interestlst, allocated_money): | |
global money, portfolio | |
for item in interestlst: | |
price = getprice(today, item) | |
if not np.isnan(price): | |
quantity = math.floor(allocated_money/price) | |
money -= quantity*price | |
portfolio[item] += quantity | |
transaction(0, item, quantity, price, "buy", "") | |
def sell(): | |
global money, portfolio, prices, today | |
itemstoremove = [] | |
for i in range(len(activelog)): | |
log = activelog[i] | |
if log["exp_date"] <= today and log["type"] == "buy": | |
tickprice = getprice(today, log["ticker"]) | |
if not np.isnan(tickprice): | |
money += log["amount"]*tickprice | |
portfolio[log["ticker"]] -= log["amount"] | |
transaction(log["id"], log["ticker"], log["amount"], tickprice, "sell", log["info"]) | |
itemstoremove.append(i) | |
else: | |
log["exp_date"] += dt.timedelta(days=1) | |
itemstoremove.reverse() | |
for elem in itemstoremove: | |
activelog.remove(activelog[elem]) | |
def simulation(): | |
global today, volumechanges, money | |
start_date = today - dt.timedelta(days=14) | |
series = volumechanges.loc[start_date:today].mean() | |
interestlst = series[series > 100].index.tolist() | |
sell() | |
if len(interestlst) > 0: | |
#moneyToAllocate = 500000/len(interestlst) | |
moneyToAllocate = currentvalue()/(2*len(interestlst)) | |
buy(interestlst, moneyToAllocate) | |
def getindices(): | |
global tickers | |
f = open("symbols.txt", "r") | |
for line in f: | |
tickers.append(line.strip()) | |
f.close() | |
def tradingday(): | |
global prices, today | |
return np.datetime64(today) in list(prices.index.values) | |
def currentvalue(): | |
global money, portfolio, today, prices | |
value = money | |
for ticker in tickers: | |
tickprice = getprice(today, ticker) | |
if not np.isnan(tickprice): | |
value += portfolio[ticker]*tickprice | |
return int(value*100)/100 | |
def main(): | |
global today | |
getindices() | |
for ticker in tickers: | |
portfolio[ticker] = 0 | |
while today < simend: | |
while not tradingday(): | |
today += dt.timedelta(days=1) | |
simulation() | |
currentpvalue = currentvalue() | |
print(currentpvalue, today) | |
today += dt.timedelta(days=7) | |
main() |
Hi,
how to get adjclose.csv and volume.csv? is there any place to download or should we scrap?
Hi,
how to get adjclose.csv and volume.csv? is there any place to download or should we scrap?
BTW, Mark discusses how to get the files, but here is a short version...
- download the symbols.txt file from his git hub.
- Run this code to generate the files...
import pandas_datareader as web
stocks=[]
f = open("symbols.txt","r")
for line in f:
stocks.append(line.strip())
f.close()
web.DataReader(stocks,"yahoo",start="2000-1-1",end="2019-12-31")["Adj Close"].to_csv("prices.csv")
web.DataReader(stocks,"yahoo",start="2000-1-1",end="2019-12-31")["Volume"].to_csv("volume.csv")
Hi. I tried to run the main () function but instead got this syntax.
line 124, in main
portfolio[ticker] = 0
TypeError: list indices must be integers or slices, not str
The main() function is written exactly the same, and getindices() is almost the same except for the fact that I assigned a specific file path in f = open('xxx/symbols.txt', r).
Anyone knows how to solve this?
Hi
Do you have "volume.csv"? what is the structure of that?