Skip to content

Instantly share code, notes, and snippets.

@markusrenepae
Created January 2, 2020 22:22
Show Gist options
  • Save markusrenepae/cae604d4c12493a55966b47e1d8bc65b to your computer and use it in GitHub Desktop.
Save markusrenepae/cae604d4c12493a55966b47e1d8bc65b to your computer and use it in GitHub Desktop.
This gist is for another medium article and is about an investment simulator.
import pandas as pd
import numpy as np
import datetime as dt
import math
import warnings
warnings.filterwarnings("ignore")
prices = pd.read_csv("adjclose.csv", index_col="Date", parse_dates=True)
volumechanges = pd.read_csv("volume.csv", index_col="Date", parse_dates=True).pct_change()*100
today = dt.date(2000, 1, 15)
simend = dt.date(2019, 12, 31)
tickers = []
transactionid = 0
money = 1000000
portfolio = {}
activelog = []
transactionlog = []
def getprice(date, ticker):
global prices
return prices.loc[date][ticker]
def transaction(id, ticker, amount, price, type, info):
global transactionid
if type == "buy":
exp_date = today + dt.timedelta(days=14)
transactionid += 1
else:
exp_date = today
if type == "sell":
data = {"id": id, "ticker": ticker, "amount": amount, "price": price, "date": today, "type": type,
"exp_date": exp_date, "info": info}
elif type == "buy":
data = {"id": transactionid, "ticker": ticker, "amount": amount, "price": price, "date": today, "type": type,
"exp_date": exp_date, "info": info}
activelog.append(data)
transactionlog.append(data)
def buy(interestlst, allocated_money):
global money, portfolio
for item in interestlst:
price = getprice(today, item)
if not np.isnan(price):
quantity = math.floor(allocated_money/price)
money -= quantity*price
portfolio[item] += quantity
transaction(0, item, quantity, price, "buy", "")
def sell():
global money, portfolio, prices, today
itemstoremove = []
for i in range(len(activelog)):
log = activelog[i]
if log["exp_date"] <= today and log["type"] == "buy":
tickprice = getprice(today, log["ticker"])
if not np.isnan(tickprice):
money += log["amount"]*tickprice
portfolio[log["ticker"]] -= log["amount"]
transaction(log["id"], log["ticker"], log["amount"], tickprice, "sell", log["info"])
itemstoremove.append(i)
else:
log["exp_date"] += dt.timedelta(days=1)
itemstoremove.reverse()
for elem in itemstoremove:
activelog.remove(activelog[elem])
def simulation():
global today, volumechanges, money
start_date = today - dt.timedelta(days=14)
series = volumechanges.loc[start_date:today].mean()
interestlst = series[series > 100].index.tolist()
sell()
if len(interestlst) > 0:
#moneyToAllocate = 500000/len(interestlst)
moneyToAllocate = currentvalue()/(2*len(interestlst))
buy(interestlst, moneyToAllocate)
def getindices():
global tickers
f = open("symbols.txt", "r")
for line in f:
tickers.append(line.strip())
f.close()
def tradingday():
global prices, today
return np.datetime64(today) in list(prices.index.values)
def currentvalue():
global money, portfolio, today, prices
value = money
for ticker in tickers:
tickprice = getprice(today, ticker)
if not np.isnan(tickprice):
value += portfolio[ticker]*tickprice
return int(value*100)/100
def main():
global today
getindices()
for ticker in tickers:
portfolio[ticker] = 0
while today < simend:
while not tradingday():
today += dt.timedelta(days=1)
simulation()
currentpvalue = currentvalue()
print(currentpvalue, today)
today += dt.timedelta(days=7)
main()
@xrayer2000
Copy link

doesnt work sadly
4de83aca223dc5143850332301e33db7

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment