Created
January 2, 2020 22:22
-
-
Save markusrenepae/cae604d4c12493a55966b47e1d8bc65b to your computer and use it in GitHub Desktop.
This gist is for another medium article and is about an investment simulator.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
import datetime as dt | |
import math | |
import warnings | |
warnings.filterwarnings("ignore") | |
prices = pd.read_csv("adjclose.csv", index_col="Date", parse_dates=True) | |
volumechanges = pd.read_csv("volume.csv", index_col="Date", parse_dates=True).pct_change()*100 | |
today = dt.date(2000, 1, 15) | |
simend = dt.date(2019, 12, 31) | |
tickers = [] | |
transactionid = 0 | |
money = 1000000 | |
portfolio = {} | |
activelog = [] | |
transactionlog = [] | |
def getprice(date, ticker): | |
global prices | |
return prices.loc[date][ticker] | |
def transaction(id, ticker, amount, price, type, info): | |
global transactionid | |
if type == "buy": | |
exp_date = today + dt.timedelta(days=14) | |
transactionid += 1 | |
else: | |
exp_date = today | |
if type == "sell": | |
data = {"id": id, "ticker": ticker, "amount": amount, "price": price, "date": today, "type": type, | |
"exp_date": exp_date, "info": info} | |
elif type == "buy": | |
data = {"id": transactionid, "ticker": ticker, "amount": amount, "price": price, "date": today, "type": type, | |
"exp_date": exp_date, "info": info} | |
activelog.append(data) | |
transactionlog.append(data) | |
def buy(interestlst, allocated_money): | |
global money, portfolio | |
for item in interestlst: | |
price = getprice(today, item) | |
if not np.isnan(price): | |
quantity = math.floor(allocated_money/price) | |
money -= quantity*price | |
portfolio[item] += quantity | |
transaction(0, item, quantity, price, "buy", "") | |
def sell(): | |
global money, portfolio, prices, today | |
itemstoremove = [] | |
for i in range(len(activelog)): | |
log = activelog[i] | |
if log["exp_date"] <= today and log["type"] == "buy": | |
tickprice = getprice(today, log["ticker"]) | |
if not np.isnan(tickprice): | |
money += log["amount"]*tickprice | |
portfolio[log["ticker"]] -= log["amount"] | |
transaction(log["id"], log["ticker"], log["amount"], tickprice, "sell", log["info"]) | |
itemstoremove.append(i) | |
else: | |
log["exp_date"] += dt.timedelta(days=1) | |
itemstoremove.reverse() | |
for elem in itemstoremove: | |
activelog.remove(activelog[elem]) | |
def simulation(): | |
global today, volumechanges, money | |
start_date = today - dt.timedelta(days=14) | |
series = volumechanges.loc[start_date:today].mean() | |
interestlst = series[series > 100].index.tolist() | |
sell() | |
if len(interestlst) > 0: | |
#moneyToAllocate = 500000/len(interestlst) | |
moneyToAllocate = currentvalue()/(2*len(interestlst)) | |
buy(interestlst, moneyToAllocate) | |
def getindices(): | |
global tickers | |
f = open("symbols.txt", "r") | |
for line in f: | |
tickers.append(line.strip()) | |
f.close() | |
def tradingday(): | |
global prices, today | |
return np.datetime64(today) in list(prices.index.values) | |
def currentvalue(): | |
global money, portfolio, today, prices | |
value = money | |
for ticker in tickers: | |
tickprice = getprice(today, ticker) | |
if not np.isnan(tickprice): | |
value += portfolio[ticker]*tickprice | |
return int(value*100)/100 | |
def main(): | |
global today | |
getindices() | |
for ticker in tickers: | |
portfolio[ticker] = 0 | |
while today < simend: | |
while not tradingday(): | |
today += dt.timedelta(days=1) | |
simulation() | |
currentpvalue = currentvalue() | |
print(currentpvalue, today) | |
today += dt.timedelta(days=7) | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
doesnt work sadly