Last active
April 20, 2022 14:07
-
-
Save masroorhasan/0e73a7fc7bb2558c65933338d8194130 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
from __future__ import print_function | |
import argparse | |
import numpy as np | |
import time | |
tt = time.time() | |
import cv2 | |
from grpc.beta import implementations | |
from protos.tensorflow.core.framework import tensor_pb2 | |
from protos.tensorflow.core.framework import tensor_shape_pb2 | |
from protos.tensorflow.core.framework import types_pb2 | |
from protos.tensorflow_serving.apis import predict_pb2 | |
from protos.tensorflow_serving.apis import prediction_service_pb2 | |
parser = argparse.ArgumentParser(description='incetion grpc client flags.') | |
parser.add_argument('--host', default='0.0.0.0', help='inception serving host') | |
parser.add_argument('--port', default='9000', help='inception serving port') | |
parser.add_argument('--image', default='', help='path to JPEG image file') | |
FLAGS = parser.parse_args() | |
def main(): | |
# create prediction service client stub | |
channel = implementations.insecure_channel(FLAGS.host, int(FLAGS.port)) | |
stub = prediction_service_pb2.beta_create_PredictionService_stub(channel) | |
# create request | |
request = predict_pb2.PredictRequest() | |
request.model_spec.name = 'resnet' | |
request.model_spec.signature_name = 'serving_default' | |
# read image into numpy array | |
img = cv2.imread(FLAGS.image).astype(np.float32) | |
# convert to tensor proto and make request | |
# shape is in NHWC (num_samples x height x width x channels) format | |
dims = [tensor_shape_pb2.TensorShapeProto.Dim(size=dim) for dim in [1]+list(img.shape)] | |
tensor = tensor_pb2.TensorProto( | |
dtype=types_pb2.DT_FLOAT, | |
tensor_shape=tensor_shape_pb2.TensorShapeProto(dim=dims), | |
float_val=list(img.reshape(-1))) | |
request.inputs['input'].CopyFrom(tensor) | |
resp = stub.Predict(request, 30.0) | |
print('total time: {}s'.format(time.time() - tt)) | |
if __name__ == '__main__': | |
main() |
Thanks for responding
Anyone coming back here. I can also confirm what @kr-ish mentioned. I am not seeing any major improvement implementing this. You should only use it if you want to reduce the whole size overall.
Anyone coming back here. I can also confirm what @kr-ish mentioned. I am not seeing any major improvement implementing this. You should only use it if you want to reduce the whole size overall.
Me too.
I've only achieved some performance gains with the compression configuration
just like this
result = stub.Predict(
request,
timeout=1, # timeout (second)
compression=1, # gzip 2, deflate 1, none 0
)
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Yes, I didn't see any inference time improvements