Last active
October 5, 2020 18:58
-
-
Save mattgaidica/7c218bb2164d9b6b872fb476808acd8d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
fs = 125; % sampling frequency | |
t = 0 : 1/fs : 5; % time (0-5s) | |
fmod = 2; % Hz | |
x = sin((2*pi*fmod*t) + pi/2); % create test signal | |
% setup plot | |
rows = 4; | |
cols = 1; | |
close all | |
figure('position',[0 0 1000 700]); | |
set(gcf,'color','w'); | |
subplot(rows,cols,1); | |
plot(t,x,'b'); % plot test signal | |
hold on; | |
xlabel('Time (s)'); | |
ylabel('Amplitude'); | |
ylim([-1 1]); | |
% setup filter | |
f1 = 0.5; | |
f2 = 4; | |
[A,B,C,D] = ellip(10,0.5,40,[f1/fs*2 f2/fs*2]); | |
sos = ss2sos(A,B,C,D); | |
y = sosfilt(sos,x); % filter test signal | |
plot(t,y,'r'); % plot filtered signal | |
legend({'original','filtered'},'location','northwest'); | |
% setup FFT | |
L = numel(t); | |
nPad = 5; | |
n = (2^nextpow2(L)) * nPad; % force zero padding for interpolation | |
Y = fft(y,n); % remember, Y is complex | |
f = fs*(0:(n/2))/n; | |
P = abs(Y/n).^2; % power of FFT | |
A = angle(Y); % phase of FFT | |
grid | |
Psub = P(1:n/2+1); % make power one-sided | |
subplot(rows,cols,2); | |
plot(f,Psub,'r') | |
xlabel('Frequency (f)') | |
ylabel('|P(f)|^2') | |
xlim([0 10]); | |
grid | |
[v,k] = max(Psub); % find dominant frequency of filtered signal | |
freq = f(k); | |
title(sprintf('Dominant @ %1.2fHz',freq)); | |
hold on; | |
plot(freq,Psub(k),'*'); | |
Asub = A(1:n/2+1); % make phase one-sided | |
subplot(rows,cols,3); | |
plot(f,Asub,'r'); | |
xlabel('Frequency (f)') | |
ylabel('Phase (rad)'); | |
xlim([fmod-2 fmod+2]); | |
grid | |
phase = Asub(k); % use k (key) to identify dominant phase | |
title(sprintf('Phase @ %1.2fHz = %1.2frad',freq,phase)); | |
hold on; | |
plot(freq,phase,'*'); | |
subplot(rows,cols,4); | |
t_sig = max(t) + (0 : 1/fs : 1); % time, forecast 1 second | |
sig = sin((2*pi*freq*t_sig) + pi/2 + phase); % phase-shifted forecast | |
plot(t,x); | |
xlabel('Time (s)'); | |
ylabel('Amplitude'); | |
hold on; | |
plot(t,y,'r'); | |
plot(t_sig,sig,'k'); | |
legend({'original','filtered','forecasted'},'location','northwest'); | |
grid | |
ylim([-1 1]); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment