Created
May 25, 2017 16:14
-
-
Save mayonesa/6c561e33641e7ba12c2a88015c90e1da to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# In this exercise, you should implement the | |
# resampler shown in the previous video. | |
from math import * | |
import random | |
landmarks = [[20.0, 20.0], [80.0, 80.0], [20.0, 80.0], [80.0, 20.0]] | |
world_size = 100.0 | |
class robot: | |
def __init__(self): | |
self.x = random.random() * world_size | |
self.y = random.random() * world_size | |
self.orientation = random.random() * 2.0 * pi | |
self.forward_noise = 0.0; | |
self.turn_noise = 0.0; | |
self.sense_noise = 0.0; | |
def set(self, new_x, new_y, new_orientation): | |
if new_x < 0 or new_x >= world_size: | |
raise ValueError, 'X coordinate out of bound' | |
if new_y < 0 or new_y >= world_size: | |
raise ValueError, 'Y coordinate out of bound' | |
if new_orientation < 0 or new_orientation >= 2 * pi: | |
raise ValueError, 'Orientation must be in [0..2pi]' | |
self.x = float(new_x) | |
self.y = float(new_y) | |
self.orientation = float(new_orientation) | |
def set_noise(self, new_f_noise, new_t_noise, new_s_noise): | |
# makes it possible to change the noise parameters | |
# this is often useful in particle filters | |
self.forward_noise = float(new_f_noise); | |
self.turn_noise = float(new_t_noise); | |
self.sense_noise = float(new_s_noise); | |
def sense(self): | |
Z = [] | |
for i in range(len(landmarks)): | |
dist = sqrt((self.x - landmarks[i][0]) ** 2 + (self.y - landmarks[i][1]) ** 2) | |
dist += random.gauss(0.0, self.sense_noise) | |
Z.append(dist) | |
return Z | |
def move(self, turn, forward): | |
if forward < 0: | |
raise ValueError, 'Robot cant move backwards' | |
# turn, and add randomness to the turning command | |
orientation = self.orientation + float(turn) + random.gauss(0.0, self.turn_noise) | |
orientation %= 2 * pi | |
# move, and add randomness to the motion command | |
dist = float(forward) + random.gauss(0.0, self.forward_noise) | |
x = self.x + (cos(orientation) * dist) | |
y = self.y + (sin(orientation) * dist) | |
x %= world_size # cyclic truncate | |
y %= world_size | |
# set particle | |
res = robot() | |
res.set(x, y, orientation) | |
res.set_noise(self.forward_noise, self.turn_noise, self.sense_noise) | |
return res | |
def Gaussian(self, mu, sigma, x): | |
# calculates the probability of x for 1-dim Gaussian with mean mu and var. sigma | |
return exp(- ((mu - x) ** 2) / (sigma ** 2) / 2.0) / sqrt(2.0 * pi * (sigma ** 2)) | |
def measurement_prob(self, measurement): | |
# calculates how likely a measurement should be | |
prob = 1.0; | |
for i in range(len(landmarks)): | |
dist = sqrt((self.x - landmarks[i][0]) ** 2 + (self.y - landmarks[i][1]) ** 2) | |
prob *= self.Gaussian(dist, self.sense_noise, measurement[i]) | |
return prob | |
def __repr__(self): | |
return '[x=%.6s y=%.6s orient=%.6s]' % (str(self.x), str(self.y), str(self.orientation)) | |
#myrobot = robot() | |
#myrobot.set_noise(5.0, 0.1, 5.0) | |
#myrobot.set(30.0, 50.0, pi/2) | |
#myrobot = myrobot.move(-pi/2, 15.0) | |
#print myrobot.sense() | |
#myrobot = myrobot.move(-pi/2, 10.0) | |
#print myrobot.sense() | |
#### DON'T MODIFY ANYTHING ABOVE HERE! ENTER CODE BELOW #### | |
myrobot = robot() | |
myrobot = myrobot.move(0.1, 5.0) | |
Z = myrobot.sense() | |
N = 1000 | |
p = [] | |
for i in range(N): | |
x = robot() | |
x.set_noise(0.05, 0.05, 5.0) | |
p.append(x) | |
p2 = [] | |
for i in range(N): | |
p2.append(p[i].move(0.1, 5.0)) | |
p = p2 | |
ws = [] | |
for i in range(N): | |
ws.append(p[i].measurement_prob(Z)) | |
def new_part(i, b): | |
w_i = ws[i] | |
return new_part((i + 1) % N, b - w_i) if w_i < b else (p[i], i, b) | |
def accumulate(ps, i, b): | |
part_i = new_part(i, b + random.uniform(0, b_incr_max)) | |
return (ps + part_i[0:1]), part_i[1], part_i[2] | |
b_incr_max = 2 * max(ws) | |
print reduce(lambda (ps, i, b), _: accumulate(ps, i, b), | |
range(N), | |
((), random.randrange(N), 0))[0] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment