library(reticulate)
p <- c("polars", "h5netcdf", "fsspec", "aiohttp", "requests", "xarray", "dask")
py_require(p)
polars <- import("polars")
xarray <- import("xarray")
pp <- arrow::read_parquet("https://projects.pawsey.org.au/idea-objects/idea-curated-objects.parquet")
## in R before
# p <- c("polars", "h5netcdf", "fsspec", "aiohttp", "requests", "xarray")
# reticulate::py_require(p)
import polars
pp = polars.read_parquet("https://projects.pawsey.org.au/idea-objects/idea-curated-objects.parquet")
d = pp.filter(polars.col("Dataset") == "oisst-avhrr-v02r01")
d = d.with_columns(source = polars.format("https://projects.pawsey.org.au/{}/{}", polars.col("Bucket"), polars.col("Key")))
dsn <- "https://raw.githubusercontent.com/OSGeo/gdal/refs/heads/master/frmts/wms/frmt_wms_bluemarble_s3_tms.xml"
library(terra)
r <- rast(dsn)
## first I did
m <- do.call(cbind, maps::map(plot = F)[1:2])
plot(project(m, to = "+proj=isea", from = "EPSG:4326"), pch = ".", asp = 1)
files <- readr::read_csv("https://ogd.swisstopo.admin.ch/resources/ch.swisstopo.swissalti3d-fOYMuina.csv", col_names = FALSE)
head(files$X1)
[1] "https://data.geo.admin.ch/ch.swisstopo.swissalti3d/swissalti3d_2019_2501-1120/swissalti3d_2019_2501-1120_0.5_2056_5728.tif"
[2] "https://data.geo.admin.ch/ch.swisstopo.swissalti3d/swissalti3d_2019_2501-1121/swissalti3d_2019_2501-1121_0.5_2056_5728.tif"
[3] "https://data.geo.admin.ch/ch.swisstopo.swissalti3d/swissalti3d_2019_2501-1122/swissalti3d_2019_2501-1122_0.5_2056_5728.tif"
[4] "https://data.geo.admin.ch/ch.swisstopo.swissalti3d/swissalti3d_2019_2502-1120/swissalti3d_2019_2502-1120_0.5_2056_5728.tif"
## a manifest array in a virtual Zarr store contains references like this (for this file it is >90000 references
## because 28x51*1500x3600 in 1x1x300x300 blocks)
#'1.39.0.7': {'path': 'https://thredds.nci.org.au/thredds/fileServer/gb6/BRAN/BRAN2020/daily/ocean_salt_1993_01.nc',
# 'offset': 302129687, 'length': 48186},
path = 'https://eoimages.gsfc.nasa.gov/images/imagerecords/73000/73909/world.topo.bathy.200412.3x5400x2700.png'
import rioxarray
import rasterio
## assign by bbox (respected by open, when we open via rioxarray)
dsn_bbox = f'vrt:///vsicurl/{path}?a_ullr=-180,90,180,-90&a_srs=EPSG:4326'
ds = rasterio.open(dsn_bbox)
gt = ds.get_transform()
## ul corner x, x pixel width, shear, ul corner y, shear, y pixel height (from top)
gebco <- "/vsicurl/https://projects.pawsey.org.au/idea-gebco-tif/GEBCO_2024.tif"
library(gdalraster)
library(wk)
library(geos)
proj <- "+proj=spilhaus"
w <- warp(gebco, tf <- "/vsimem/spil.vrt", proj, cl_arg = c("-tr", 25000, 25000))
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
alg/data/2by2.tif | |
alg/data/3by3_average.tif | |
alg/data/3by3_sum.tif | |
alg/data/4by4.tif | |
alg/data/bug_6526_input.tif | |
alg/data/contour_in.tif | |
alg/data/geoloc/latitude_including_pole.tif | |
alg/data/geoloc/longitude_including_pole.tif | |
alg/data/nodata_precision_issue_float32.tif | |
alg/data/pat.tif |
## docker run --rm -ti ghcr.io/mdsumner/gdal-builds:rocker-gdal-dev-python bash
reticulate::use_python("/workenv/bin/python3")
library(reticulate)
py_require("virtualizarr")
open_virtual_mfdataset <- import("virtualizarr")$open_virtual_mfdataset
ds <- open_virtual_mfdataset(list("https://thredds.nci.org.au/thredds/fileServer/gb6/BRAN/BRAN2023/daily/atm_flux_diag_2024_06.nc"))
Spider worldclim for urls of useable data
library(bowerbird)
my_directory <- tempdir()
cf <- bb_config(local_file_root = my_directory)
##https://geodata.ucdavis.edu/climate/worldclim/2_1/base/wc2.1_10m_tmin.zip
src <-
NewerOlder