Created
February 8, 2021 16:04
-
-
Save mgei/ea3116c6f2447cc928dcaa2fd5943729 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# What is PCA? | |
# - PCA is a form of multi-dimensional scaling. | |
# - It transforms the data into a lower dimensional space while keeping the maxiumum of information. | |
# Book: Multi-Dimensional Diversification | |
# get data https://www.msci.com/end-of-day-data-search | |
library(tidyverse) | |
library(tidyquant) | |
library(readxl) | |
msci <- read_excel("historyIndex_msci.xls", skip = 6, col_names = T) | |
msci <- msci %>% mutate(Date = as.Date(Date)) | |
msci <- msci %>% gather(Index, Value, -Date) | |
msci %>% group_by(Index) %>% filter(!is.na(Value)) %>% summarise(start = min(Date)) %>% | |
arrange(desc(start)) | |
msci <- msci %>% filter(Date >= "1997-01-01") | |
msci %>% ggplot(aes(x = Date, y = Value, color = Index)) + geom_line() + | |
theme_tq() | |
returns <- msci %>% group_by(Index) %>% tq_transmute(select = Value, | |
mutate_fun = periodReturn, | |
period = "monthly", | |
type = "arithmetic") | |
returns %>% filter(Date >= "2018-01-01") %>% ggplot(aes(x = Date, y = monthly.returns, fill = Index)) + | |
geom_bar(stat = "identity") + | |
facet_wrap(~Index) + | |
theme_tq() | |
correlations <- returns %>% spread(Index, monthly.returns) %>% select(-Date) %>% cor() | |
returns %>% spread(Index, monthly.returns) %>% select(-Date) %>% chart.Correlation() | |
## PCA | |
pca <- returns %>% spread(Index, monthly.returns) %>% select(-Date) %>% as.matrix() %>% | |
prcomp(scale. = T, center = T) | |
pca %>% summary() | |
library(factoextra) | |
pca %>% fviz_eig() | |
pca %>% fviz_pca_ind() | |
pca$rotation | |
eigenvectors <- returns %>% spread(Index, monthly.returns) %>% select(-Date) %>% as.matrix() %>% | |
cor() %>% eigen() | |
eigenvectors$vectors | |
pca$sdev^2 | |
eigenvectors$values | |
t(pca$rotation[,1])%*%pca$rotation[,4] | |
pca %>% fviz_pca_var(repel = T) | |
# Varimax rotation | |
pca$rotation[,1:3] %>% varimax() | |
returns %>% tq_portfolio(assets_col = Index, weights = rep(1/6,6), returns_col = monthly.returns) %>% | |
tq_performance(Ra = portfolio.returns, performance_fun = table.AnnualizedReturns) * 100 | |
returns %>% tq_portfolio(assets_col = Index, weights = c(1, 1, 0, 1, 1, 0)/4, returns_col = monthly.returns) %>% | |
tq_performance(Ra = portfolio.returns, performance_fun = table.AnnualizedReturns) * 100 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment