In descending order.
$2^{\lg^* n}$ $\lg^* n$ $\lg (\lg^* n)$
We consider
| func (l *Log) MInsertIndex(day string) int { | |
| lBound := 0 | |
| uBound := len(l.Measurements) | |
| for uBound > lBound { | |
| mid := (uBound + lBound) / 2 | |
| cmpResult := cmp.Compare(l.Measurements[mid].Day, day) | |
| if cmpResult <= 0 && lBound == mid { | |
| lBound += 1 |
There is a part in CLRS chapter 3 where they have
a. Restrict the domain to powers of 2, so
We have
$$ \begin{align}
| class Table | |
| def initialize(n, firstValue) | |
| @m = {} | |
| (0...n).each do |i| | |
| @m[i] = {} | |
| (0...n).each do |j| | |
| @m[i][j] = firstValue | |
| end | |
| end | |
| end |
| #!/usr/bin/ruby | |
| #require 'test/unit' | |
| require 'test/unit/testcase' | |
| class TestBST < Test::Unit::TestCase | |
| # ... tests omitted... | |
| def test_no_crashes |
| using System; | |
| class EnemyTowers | |
| { | |
| const int INF = int.MaxValue; | |
| public int sim( int s, int h, int a, int t) | |
| { | |
| int ret = 0; | |
| int p = h; | |
| while( s > 0 && t > 0 ) { |
| // requires prototype for some of its synctactic sugar | |
| var Undiscovered = 0; | |
| var Discovered = 1; | |
| var Processed = 2; | |
| var time = 0; | |
| var scc_count = 0; | |
| var states = {}; | |
| var et = {}; | |
| var low = {}; |